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Abstract

We connect the shuffle algebras depending on a parameter n to each other via
specialization maps. In particular, we get n2"~! of algebra homomorphisms from
the imaginary subalgebra of the n-th shuflle algebra to the smallest one. We
also verify their compatibility with the previously studied Bethe, Heisenberg,
and slope 0 subalgebras. Our approach is “dual” to [FJMM] that used fused
currents.

1 Introduction
1.1 Summary of results

Shuffle algebras were first introduced by Feigin and Odesskii to study elliptic
quantum groups corresponding to elliptic curves, see [FO]. At the same time,
the classical quantum groups arose as g-deformation of universal enveloping
Lie algebras in the 1970s, and since then, they have had many applications in
maths and physics, namely in fields such as string theory, quantum field the-
ory, combinatorics, inverse scattering method, geometric representation theory,
quantization, and deformation theory. In the standard numerous literature the
quantum groups are explicitly defined by generators and a long list of defin-
ing relations. The three common realizations of the g-deformed loop Lie alge-
bra include the Drinfel’d-Jimbo realization, the new Drinfeld /loop realization,
and the so-called RTT realization (see [DF] ). At the same time, as became
clear over the last decade, the trigonometric version of the Feigin-Odesskii shuf-
fle algebras provide a powerful combinatorial approach to quantum affine/loop
groups, which is completely free of the cumbersome collections of generators
and defining relations. In this realization, the algebras are realized in the space
of multi-symmetric rational functions subject to some constraints on numera-
tors and denominators, and with a rather simple but non-trivial shuffle product.

In the present paper, we connect various shuffle algebras among them-
selves in view of the above discussion, This can be viewed as a dual version
of the construction of [FJMM] that embeds quantum toroidal (a.k.a. double
affine/loop) gl; into the imaginary-degree part of the quantum toroidal gl,, via



"fused currents". Since the latter objects are subject to certain convergence
issues and may be defined only on a suitable category of representations, our
combinatorial construction simplifies and generalizes that of [FIMM] as well as
allows to establish a good behavior with respect to previously studied various
important subalgebras in question.

1.2 Outline of the paper

The structure of the paper is as follows. We recall the definitions of shuffle al-
gebras and quantum affine algebras along with other key elements of our setup
in section 2. In Section 3, we introduce the first two main results of the paper
in Main and Second Theorems. Then, we detail the main construction of our
homomorphism mapping from shuffle algebras one dimension to shuffle algebras
of another dimension with examples. This is where we will perform the main
calculations that will give us the new parameters for the algebra. In Section
4, we verify the compatibility of our algebra homomorphisms with some of the
known subalgebras, such as Bethe algebras and horizontal Heisenberg algebras.
In Section 5, we outline some questions for future pursuits in this topic.

2 Set Up
2.1 Lie Algebras and Simple Lie Algebras

A Lie algebra g is a vector space over an arbitrary field F with an operation:
[]:gxg—g

called a Lie bracket, such that the following three properties hold:

1. This operation is bilinear: for Vz,y,z € g, Va,beF

[az + by, z] = a[z, 2] + b[y, #]
[z, ay + bz] = alz, y] + b[z, 2]

2. Skew-symmetry: [x,y] = —[y,z] Vx,y€g
3. Jacobi identity: [z, [y, 2]] + [y, [z, 2]] + [z, [z, 9]] =0 Vz,y,z € g

A Lie algebra g is finite-dimensional simple if g is not abelian and the only
ideals in g are 0 and g itself. The study of simple Lie algebras was carried
out in the last century. In particular, using the root decomposition, one can
classify simple Lie algebras by the combinatorial data of Dynkin diagrams or
equivalently Cartan matrices. The latter can be used to present simple g by
generators and relations.



2.2 Dynkin Diagram and Cartan Matrix
2.2.1 Dynkin Diagram

All simple Lie algebras are in bijection with one of such Dynkin diagrams and
they are a way to encode roots of Lie algebras using nodes, therefore defining
Lie algebras and providing insights into the representations of Lie groups. Each
node in the diagram corresponds to a copy of sly. Two vertices are disconnected
if the corresponding sl; commute and are joined by a single line whenever there
is a nontrivial commutation relation. In this paper, we use I to represent the
set of vertices of the Dynkin diagram of g. The Dynkin diagrams with only one
edge are known as simply laced Dynkin diagrams.

Figure 1: Dynkin diagrams for some simply-connected simple Lie algebras

Here, the other Dynkin Diagrams of types B, C, D, E, G are left out
of the picture because they are not simply laced. Dynkin diagrams are espe-
cially simple when they are representing simply laced Lie algebras. They are
simple to treat because they don’t contain multiple edges, and the set of Serre
relations are of either degree 2 or 3. In general setup, they can be much more
complicated and the sub family of simply connected Lie algebras requires more
a refined notion and all the combinatorial data about that.

A more specific way to construct Dynkin diagrams will be discussed below
when we introduce Cartan Matrices.

2.2.2 Cartan matrix

In this paper, Cartan matrix will be denoted by A = (a;;);';—; with n = [[|
which is the number of vertices of the Dynkin diagram. A should be an sym-
metrizable n xn positive definite square matrix subject to the following relations:

Qg = 2

aij €ZLgo ViFj

Qaij = 0< aj; = 0
We note that Cartan matrices of simple Lie algebras are diagonalizable, i.e.,
there exist relatively prime positive integers d; such that d;a;; = dja;;. The
symmetrized Cartan matrix (d;;) is defined to have entries given by these values
d;a;;. A crucial property of the Cartan matrices is that it defines a positive
definite quadratic form. That is, we have the inequality Z? je1 dijriz; > 0 for
any ri,...,&, € R with an equality only for z; =,...,= 2, = 0. For Cartan



matrices of simply laced Dynkin Diagrams, all d; = 1. For that reason, there’s
no real difference for d;; and a;; in simply laced cases. Replacing the condition
of positive definite by positive semidefinite forms (where the equality holds not
only for the zero vector) gives rise to affine/loop algebras that will be introduced
below in a different realization.

2.3 Tensor Algebra

Let V®F denote the k-fold tensor product of the vector space V, defined over a
field F. The tensor algebra T(V) is defined to be the vector space

o)
T(V)=Fepver
n=1

with sum between V®* as direct sums and multiplication defined by external
tensor product, namely (a1 @ ... ®ap) @01 ® ... @bp) =01 ®...Qa, b1 ®
... ®bmy. Once a basis {e;---e,} of V is chosen, T(V) is naturally identified
with the free associative algebra generated by{e; ---e,} with a multiplication
being a concatenation of words.

If g is a Lie algebra with a basis of {e; - - - e, }, the universal enveloping algebra
U(g) is defined as the quotient of T'(g) by two-sided ideal generated by e; ® e; —
e; ®@e; —[e;, e;]. This construction is actually independent of a choice of a basis,
as follows from the universal property of U(g):

HomLic algcbra(ga A) - HomAssociativc algcbra(U(g)a A)

for any associative algebra A, endowed with a Lie bracket via [a,b] = ab — ba.

2.4 Loop Lie Algebras
For any Lie algebra g, the loop Lie algebra Lg is defined as the vector space:

Lg=g@C[t,t7!] = {a(t) => apt"

endowed with the Lie bracket:

an € g,n € Z, a, =0 for |n| >>0}

[t@t"y@t"] = [z,y] @t"T™ Vz,yc€g Vn,meZ
For example, if g = slo, the traceless 2 x 2 matrices which have the basis

0 1 0 0 1 0
e = {O 0}, f= [1 0}7 h = {O _J , then the loop algebra L(sly) has a

basis {et”, ft™, ht" },cz.

2.5 Drinfeld-Jimbo Quantum Group

We define the g-integers, factorials, and binomial coefficients via:

q k n [n] L
W= e W= W (%) ~mmhm



For a finite-dimensional simple Lie algebra g, the Drinfeld-Jimbo quantum group
U,(g) is generated by {Eli, Kiil}iel, with I denoting the set of the vertices of
the Dynkin diagram of g as before and the following defining relations (for all
i,j€lI).

1—aij
Z(—l)’“(l_ka”) (B BF (BF) ™ =0, i) ()
k=0 i

K;Ef = qidﬂEjiK. K,K; = K;K; (2)
_ K, — K *
(BT By ] = 5Jﬁ (3)

Here, as agreed above, (a;;) denotes the entry of Cartan matrix of g and (d;;)
denotes that of the symmetrized Cartan matrix of g. The relations (1) are com-
monly called g-Serre relations.

2.6 Quantum Loop Algebra

The quantum loop algebra U,(Lg) is a quantization of the universal enveloping
algebra of L£g. We can define it by generators

4 4 reZ,leN . . . . .
{EZ S| ic} s , satisfying the following relations. The relations are:
i€
ef (z)e;r(w) (w— zq*d“) = ej(w)ef(z) (wq*d” —z) (4)
e; (2)ej (w) (w— 2q™7) = e; (w)e; (2) (wqi — z) (5)

lf’L#] ZO‘ES(l a”)zl o

& (201)) - & (zom) €f (w)e

e . 1—ay;

177 Toesuay S C0F (150 (7)
1

& (2o(1)) - € (o) €5 (W)ei (2o(k+1)) --- €5 (20(1-aiy)) =0

pe( 15 ) (6)

Zo(k+1)) ej_ (Za(lfaz‘j)) =0

(=
i

Kf(w)ej'(z) (z —wq™ %) = ej(z)Kji(w) (2~ % —w) (8)
KE(w)e; (2) (2 —wq™) = e (2)KF (w) (2% — w) )
KE(2)KS (w) = K (w)KE(2), K K=1 (10)

et (2). 5 (w)] = j%‘s_fi)l (KF(2) - K () (1)

where ¢; = ¢q%. We first define the currents as follows:

=B (=N, KA = Y Kk

reZ rez leN



We note that the assignment E+ — Ejo, E; — E;, and Ki — Kio gives rise
to a injective algebra homomorphlsm U,(g ) — U, (Eg) Evoklng the triangular
decomposition:

Uq(Lg) = Uy(Lg)t @ Uy(Lg)° @ Uy(Lg)~ (12)

where the middle factor is commutative, while the third factor is naturally
isomorphic to the first one via E;fr — E; _,, we shall just focus on the positive

subalgebra U, (Lg)" generated by EZTT with i € I,r € Z.

2.7 Quantum Toroidal Algebras of gl,

The crucial feature of the loop algebras Lg for simple g is that they can also
be defined by generators and relations, similarly to g, but starting from the
extended Dynkin diagram or extended Cartan matrix corresponding to posi-
tive semidefinite quadratic forms, see 2.2. As such taking the loops in them,
one obtains the toroidal algebras U,(g). However, only in type A,, it is also
possible to introduce yet another deformation parameter, which corresponds to
having cycles in the corresponding Extended Dynkin diagram. This results in

the quantum toroidal algebras Uq,d(gA[n) that underline the present work. In the
rest of the paper we shall however use their combinatorial realizations, evoked
in the Introduction, which we recall in the next section.

2.8 ShufHe algebras

Shuffle algebras were first introduced by Feigin and Odesskii to study ellip-
tic quantum groups corresponding to elliptic curves, see [FO|. Let 3j denote

the symmetric group of k elements, and X, .y = Xk, X --+ X X, for

ki,...,k, € N. Consider an N’-graded vector space S = @S,&"), where

k= (ki,...,k,) € N and S;C”) consists of Y symmetric rational functions in
1<r<k; 171

ic1 . Here, n = |I] as before. In this paper, we use Xff
1<r<k;
el -
For any collection of rational functions (;;(z), we endow the shuffle algebra S(")
with the following bilinear shuffle product * : given F € S,g") and G € Sl(")

define FF'« G € sin

the variables {x; ,}

to represent {x; .}

k+1
1,kq +1 n—1,kn_1+ln 1
(F*G) (X1,11+1a-~-7Xn_171 ! 1)—m
jeI s>k;j
ik kj+1;
Symy, ,, F(Xi,l ) 'G( ;k +1) H H QJ( . )
i€l r<k; L
where k! = [],.; ki!, and the symmetrization of F' € C (Xff‘) is defined

via
i,k'i i,ai ]i?ri
Symzﬁ(F) (Xi,l ) = Z F (Xi,a,',((l)))
(01.-~0n71)62ﬁ

, the averaging of F' over the product of symmetric groups acting termwise by
permutation of the variables of each color.



In the following four sections 2.8.1-2.8.4, we introduce the shuffle factors
as well as pole and wheel conditions for all ,, with n > 1. While the treatments
of n=1, n=2, n=3, and n>3 cases are different, they naturally fit into the same
framework and have a common underlying picture and logic.

2.8.1 Shuflle Algebra for gl

If g = gly, since there is only one color, we let k; = k, {xl,r}le = {xr}le. If
F(Xx¥
f (X{“) = %, and F' is a symmetric Laurent polynomial, then f is
i J
1<iAj<k

said to satisfy the pole condition.

If f (Xf) = 0 whenever there exist 1 a, b, ¢ k such that z, = gd 'z, 2, = qdz.
and z. = ¢~ 2x,, then f is said to satisfy the wheel condition. These ratios are
conveniently encoded by the weighted edges as depicted in Figure 2

Let Sh:[ (k) denote the subspace of all f € S satisfying both pole and wheel
gl

conditions.

N

/ gd‘l K\ |

\w

Figure 2: Wheel condition-Sh 5

1

The shuffle factor of Sh;{ is given by

w® <$Z> _ (@i —q%a) (wi — qd” ) (@i — gdxy)

Tj (i — ;)
_ (i — gy ') (@ — gy Mag) (@ — a5 ')
(w; — 2;)°

2.8.2 Shuffle Algebra for gl,

If g = gly, we let {$1,r}f1=1 = Xll,’fl and {a:27s}k2 = X;j’f"‘, specify Xi’fl color

s=1
2
0, and XQ’fl color 1.

1 kl 2,kg
x! kl 2,k2 F( X2 ) : ;
If f ( |X ) = W, and F is a symmetric Laurent polyno-
I1  (e1,r—w2,6)
1<r<ky

mial, then f is said to satisfy the pole condition.
If f X1 k1|X2 kz) = 0 whenever there exist 1 < a,c < ky and 1 < b < ko meet

one of followmg condition 1 or condition 2, then f is said to satisfy the wheel
condition and we say f wheel in color (0,0, 1).



condition 1: 1,4 = qdzay and x9p = qd*1x17c

condition 2: 1, = qd_lxg,b and xop = qdxic

If f (Xllf1|X§f2) = 0 whenever there exist 1 < b < k; and 1 < a,c < ko meet

one of following condition 1 or condition 2, then f is said to satisfy the wheel
condition, and we say f wheel in color (1,1,0).

condition 1: 9, = gdz1 and z1p = qd_lxg’c

condition 2: 3, = qd71x17b and x93 = qdra,.

These ratios are conveniently encoded by the weighted edges as depicted in Fig-
ure 3.

T
= “ \(\ =
S
N

Figure 3: Wheel conditon—Sh;{
2

Let S h;{ (k1, k2) denote the subspace of all f € S satisfying both pole and wheel

conditions. The shuffle factor of S hg:[ is given by

2

—2
xi,r —q xj,s

, if j =4 mod 2;
e (%) Tig = Tjys
W\xje) ) (@ir—qd e s) (w0 — qdr;
e (i = 0" 23 ) @i Z00%58) 5 54y od 2
(@i — 2j5)
That is:
—1
[
Lir — 2 Tjs if j =i mod 2;
@) [ Tir\ Liyr — Tj,s
”i,jxf_—(._—l, R Py
gos Tir = G js)(@ir — 43 Tjs)

, ifj=i4+1 mod 2;
(@ir — 75.0)°

2.8.3 Shuffle Algebra for gl,

_ k1 _ 1,k ko _ 2,ko k3 _ 3,k3
If g = gl3, we let {x1,} L, = Xint {z2s},2, = Xon and {z3.},2, = X317,

: 1,k 2,k: 3,k
specify X774 color 0, X5 color 1 and X3 color 2.

1,k 2.k 3,k
FlXx., 1|X B 2|X;’ 3
1,k 2,ko 3,ka\ __ ( 1,1 2,1 3,1
Iff<X1,1 X7 1X50° ) = == e Zzm , and
(1i—22,5) Il (w25—ws ;) I (23i—=15)
1<i<kq 1<i<ko 1<i<kg

F' is a symmetric Laurent polynomial, then f is said to satisfy the pole condi-
tion.



If f (X};fl |X§_;f2|X§;f3> = 0 whenever there exist 1 < a,c < k; and 1 < b < k;
meet one of following condition 1 or condition 2, then f is said to satisfy the
wheel condition and we say f wheel in color (i—1,i—1,j—1), where 1 <14, j < 3.

condition 1: j=i+1mod 3, z;4=qdz;y and ;= qd ;.

condition 2: j=4¢—1mod 3, ;.= qd_lxj’b and 1z, = qdw;

Let Shg:[ (k1, ko, k3) denote the subspace of all f € S satisfying both pole and

wheel conditions. The shuffle factor of Sh;{ is given by
3

-2
Tir —(q "Tjs

, if j =i mod 3;
LTir — Lj,s
-1
w§3?<xi”’> A7 Tir — qTjs if j =i+ 1 mod 3;
“J -Tj,s xi,r *xj,s ’ 7
Tir —qd tx;
Tir 792 Tis o ifj=i—1mod 3;

L, — xj,s

2.8.4 Shuflle Algebra for gl,

_ k1 _ 1,k1 kn _ n,kn :
If g = gl,, we let {Il,h}n:1 = X1 a---a{xn,rn}rn:1 = X,1", and specify
1,k n,kn
Xiq' color 0,..., X, ™ color n — 1.
1,k Jk
5 (xxm) — F(xi )
1,1 o “En,l T 1<j<ko 1<j<kg 1<j<k;
[ (zri—z25) I (@2—x35).. Il (zni—w1
1<i<kq 1<i<ko 1<i<kn

dition.

If f (Xlly’fl, . ,ng") = 0 whenever there exist 1 < a,c <k; and 1 <b < k;
meet one of following condition 1 or condition 2, then we say the shuffle algebra
wheel in color (i — 1,4 — 1,5 — 1), where 1 <4,j < n.

condition 1: j=i+1modn, z;,=qdz;yp and xj, = qdilzm

condition 2: j=i¢—1modn, z;,= qd_lxjtb and ;5 = qdz; .

These ratios are conveniently encoded by the weighted edges as depicted in Fig-
ure 4 Let Sh:[ (k1i,...,k,) denote the subspace of all f € S* satisfying both
al,
pole and wheel conditions. For 1 < r < k; and 1 < s < k;, the shuffle factor of
Sh:{ is given by
g n

—2
Tir —q "Tjs oo .
2 LR i =4 mod n;

Tir — Tj,s
d_ll'i r —(qT; s e .
T —r TR if =4+ 1 modn;
(n) ir ) ) ’ ’
wm- — | = Liyr — Tjs
Lj,s

—1
Tir—qd x5 ... .
UL L if j=i—1 mod n;
LTir — Lj,s

1 otherwise.

)



Figure 4: Wheel condition-Sh=

gl

The relation between the shuffle and quantum toroidal algebras is established
by the following results.

Proposition 2.9 The assignment E;'T — xi 1 give Tise to an algebra homomor-

phism p: Uga(U; 4(al,))” — Sh§ln

The proof of this result is straightforward as it requires only verifying that the
above assignment is compatible with the defining quadratic and cubic relations.
The following result is much harder and was proved in [N1, N2|

Theorem 2.10 The homomorphism p in the Proposition 2.9 is actually an
algebra isomorphism.

3 Main Results

The paper of [FIMM] provided an interesting but quite obscure construction
of the algebra homomorphisms from the quantum toroidal of gl; into the imag-
inary degree part of the quantum toroidal gl,. The latter involved fusion of
currents, which involves infinite sums, hence being defined only up to conver-
gence assumptions.

We shall start our treatment from its simplest counterpart, namely the

simplest non-trivial case, the map from @, Shg:[ — Shg:[ . This simplest case
2 1
contains many of the key elements of our general construction and provides

insight into the homomorphism, and how different inputs lead to predictable
numbers of specializations. One of the goals is to construct an algebra homo-
morphism from the imaginary subalgebra of a shuffle algebra to the whole of
another, mathematically speaking it is:

S hZ{” — Shz . For our main theorem, we generalize the discussion in [FHHSY]
gly 9tm
and construct algebra homomorphisms from certain subalgebras of Sh= to
Olmgn

Shg, . There’s a family of algebra homomorphisms given by certain specializa-
tion procedure that would be described later:

10



Theorem 3.1 (Main Theorem)

We have algebra homomorphism:

’rern’n : @ Shg:[ . (koﬂ"'7k07k1»"'ﬂkn71)|q1,EI2,lI3 — Sh;{ |§1,§2’§3
m+n w_/%,_/ n
ko,k1,..skn—1€EN m+1 o1

Theorem 3.2 (Second Theorem)

We have algebra homomorphism:

Ty ke?\; Sh;[n (ka ) k)|q1¢12,43 - Sh§[1 |§1,§2,§3
€ n

Remark 3.3 We note that the above two algebras both in Main Theorem and
Second Theorem will have different parameters as the homomorphism doesn’t
preserve the parameters and there are different parameters q1, q2, q3 and ¢1, g, G3
for different mappings depending on specific homomorphism constructions. The
mapping s component-wise

We will verify in Section 4 that these algebra homomorphisms with some com-
patibility of subalgebras studied in [N1] [FT]. In Section 4, we shall also verify
that these homomorphisms are compatible with important subalgebras studied
in [FHHSY, FT, N1J.

3.4 From Sh= to Sh=z
gly aly

By considering the typical of Sh 5
gla
ization will be of the following nature of specializing a segment of the variables

and then multiplying by some rational function. From now on, we shall always

define some specialization of a function f as spec- f. In this case, we send f to

its specialization times G, f +— spec(f) - G. Here, the specialization action is

taking some of the variables to be multiples of each other and g as some rational

function factor. See the later section for more details.

In Sh;{ (k, k), we have variables of Xllf and X22f in two different colors. To
2

to Sh 5 » We can see that our maps of special-
ghy

simplify notations, we rename Xllf and XQZf by X¥ and Y{* respectively. Fur-
ther, in this paper, we use Ag to represent (a;, @it1 - .. a;), where a; is a variable,
and use cA] to represent (ca;,ca;t1 ...caj), where ¢ is a constant.
In order to construct an algebra homomorphism Y5 1 : Shg:[ (k, k) — Shg:[ (k)
2 1
the general idea of our algorithm is: for V f(XF|Y) € Sh= (k, k) we specialize
gtz

XE = \YF, therefore, Yo 1 (f(XF|YF)) = FONYF|YF).
We know f(XF|Y}) satisfies the pole condition and wheel condition of Sh; )

2

while f(A\Y{|Y}) satisfies those conditions of Sh 5, we can amend this by using
9

a rational factor of G(YF).

11



In addition, we also anticipate some constants that inherently come with
the specializations, which we would denote ¢, for a function f(X 1’“). Our goal
is to determine the rational factor G(Y{*), ¢, and explicit relations between
q1, 42,93 and q1, G2, g3 that would make Y5 ; a compatible homomorphism map-

ping.

Remark 3.5 Our main argument for why X € {qd*!, qd*'} comes from ana-
lyzing the number of terms in both sides of the homomorphism. We have ho-
momorphism, L(f(x) * g(y)), for f,g functions of k,l variables respectively is
Cr., - Cr.,, and such choices of X to kill the unbalanced terms. On the LHS
we are picking a set of k elements of a specific color to go into f(z) from all
elements of that color from f(x) and g(y), yielding C,’jH terms. On the RHS,
Yf(x)* Yg(z) only has two terms. Therefore, make the number of terms on
both sides equal by letting the w terms on the left vanish, restricting the possible
choices of A to qd,qd ™.

For example. For f(xi|y1),g(z2|y2) € Sh ( 1), let x; = Ay; with i =
1,2. To simplify the notations, we omit the shuﬁle factors and G factors in
computing [ * g by using the symbol ~ instead of equality. To ensure 2,1(f
g) = 2,1(f) 2,1(g), we must kill the terms containing f(y2/y1) - g(y1/y2) and
f(y1ly2) - g(y2Jy1). Tracing back the zeroes of the corresponding w'® -factors we
find that = qd or = qdi. We want to construct a homomorphism Yo 1 such

that Yo 1(f *g) ~ Yo 1(f) * T2.1(9).

Yo1(f *g) ~f(Ayrlyr) - 9(Ayalyz) + f(Nyely2) - g(Ayilyr)+
FO2ly1) - g(Ayaly2) + fF(Ayilye) - 9(Ay2(y1)
Yo,1(f) *To1(g) ~fly1) *g(y2) ~ f(y1) - 9(y2) + f(y2) - 9(y1)

To ensure To1(f xg) ~ Yo 1(f) x Y21(g), we must kill the item of f(Aya|y1) -
g Ay1lye) and f(Ayrlye) - 9(Aya|y1), which can be done by specializing A €
{qd*!, qd*'}.

In addition, we can prove the validity of our A choices by looking at the
wheel conditions. We specify XF color 0 and Y{* color 1. To map two col-
ors to one single color, we have to make sure that the image of every shuf-
fle product between two variables of different colors should be contained in

Sh; (k). This means wz(i)J(f) =0, so (z — qd~1y)(xz — qdy) = 0, implying that
1

r=qd 'yorz=qgdyand A =qd or A = qd~".

In summary, these A ensure that we kill unwanted wheel conditions that
arose from different colors but also preserve the homomorphism of the mapping.

Below, we will discuss how choices of X yields different rational factor G
and different relation between the parameters ¢, ¢2,q3 and ¢, o, q3:

12



3.5.1 Case 1: A=qd

In this case, XF = ¢dYF. First, since Y5, is an algebra homomorphism
from Sh= to Sh= , we must have [] (y; —y,) in the denominator, and
al, gl 1<i#j<k
have J[ (qdyi —y;)* in the numerator to eliminate the denominator of
1<i,j<k

flqdYF|YF).

Second, the specialization of f has certain zero divisors due to the wheel con-

ditions of Sh:[ . Explicitly, we have zeroes at any y; — ¢?y; for i # j. Thus, we
gl

try
T (adyi = v;)?
1<4,5<
G(Yf) = —= . — Ch
T =) (v — ?y5) (s — a2y;)

1<i<j<k

C} here is a constant that is yet to be determined, which depends on ¢ and d
but not Y}*. In particular, when k = 1,

Yo (f(xly) = p(Ly'y)z (qdy —y)* - C1 = p(qdy|y) - C1
(qdy — )

Given f(XF|YF) € Shg:[2 (k, k) and g(Xfﬂ\Ykkj_l) € Shgx[Q(l,l), we have

qdYF
f (qdYFYE) - g (qdVEHYEN) - 0@ =
qdY

'w(2')+1 (qd}}@’j) cw?) 1 < YIZ z) cwi? < iﬁ)
’ Yk++1 ’ quijl ’ Yk++1

[T (qdyi —y;)°

To1(f *g) = Sym

1<i j<k-+l c
5 — Yk
Il (wi—v) (Wi = Pyi)(wi —a2y;)
1<i<j<k+1
- o ), Y2\ _ = ) [y .
To simplify the notations, let w; ; (Y—Cd) = <H<b wij (gF ), that is
a<i<

k+1<j<k+l _ k+1<j<k+l _
(o) adYE - (qdyi —qdg 2yj> _ ﬁ (yz-—q Qyj>

YR qdy, wiT) H qdy; — qdy; Yi — Yj

k+1 1<i<k 1<i<k

kE+1<j5<k+l _
e (qul’“) B ﬁ‘ <qdy¢qd 1yj> (qdyiqdyj>
Qi1 =

Vi \Ziek qdy; — y; qdy; — y;
k+1<j<k+l
w? ( v ) = ﬁ (yz - 92d29j> (yi - q2?!j>
P gayEr] Zien  \ wi—ady; ) \yi— qdy;
k+1<j<k+l _
NCTR. ﬁ (1/—(12%>
PR k+1/ o aps
Yl 1<i<k Yi—Y;

We can move the latter fraction of Yo 1(f * ¢g) inside the Sym bracket. After
cancellation of common terms between the numerator and the denominator, we
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get

Y(FYF) - T(g(YVE))-

. C _
T2,1(f*g) = Sym. ’“ﬁ““ (e = ") = PPy) 0~ d7*,) ey 1)
1<i<k (yi — Z/j)

Picking ¢, = (qcl)k2 or wherever, we get Formula for G follows:
_ 2
I (ed 'y —y))
1<i,j<k

2 _
T i =) (v — ?y5) (i — a2y;)
1<i<j<k

G = (gd) ™

with the parameters 1, ¢2, ¢3 related to g, d via
al = d2a 52 = q2753 = q72d72

we construct an algebra homomorphism,

@Sh k k |q1’q2’q3 - Sh ( )|QI:‘Z1‘13_1;Q~2:‘12:‘73:Q§ given by

(@)~ T1 (adyi —y;)?

1<i,j<k

2
T wi—wy) (v — yy) (s — a2y;)
1<i<j<k

Toq:f (melk) - f (qu1k|Y1k) )

Remark 3.6 As we saw above, the verification of the fact that Yo, was an al-
gebra homomorphism eventually boiled down to a solution for the system Z’Ztl‘ =

B, with the right-hand sides explicitly give. The existence of such ¢y is guaran-
teed by the validity of the equalities Bii,mBr,i = Bri+mBim for any k,l,m > 1
In the above example, we can easily see that ¢ = (qd)*’c2 is a solution.

In the end, the existence of such constant is given by 7?7, but every constant is
given as a fraction in the sentence below:

Ck+Il4+m . Cl+1 _ Ck+l4+m . Cl4+m (13)

Crk+1Cm  CkCl CkCl+m  CiCm

3.6.1 Case 2: \=qd !
We specialize XF = qd='Y}".
Similar to the analysis of 3.5.1, we have

_ 2
[T (¢d 'y —y;)
1<i,j<k

2 _
T i =) (v — yy) (s — a2y;)
1<i<j<k

G(Y)) = - Ck,

Again, we have to check whether the products are compatible and determine
G(YF), @1, g2 and gs.

14



— 9 2 Y
Flad YE V) - glad YERIVER) @ (Yklz)

k+1
Y2,1(f*g) = Sym ok i o
2 (9dY; (2) Yy @ [ gd Yy
Wiitl | “vr | Wil vE | Wi R
Yl qd='Y qd=Y
_ 2
[T (¢d 'y —yy)
1<, <k+l 'Ck+l
T i—v) (v — ?y)(yi — a2y)
1<i<j<k+l
Y(f(YF) - Y(g(VEH)- g
k<i<k4+l1 _ _ k+1 1\2kl
T2.1(fxg) = Sym Jﬁ (i —a7°y;) (i — *d*y) (v = ;) |5 5700 )
3
1<i<k (yi — ;)

This time, we take Cy = (qd=!)~*" then g:a (gd=1)?* = 1. By picking
_ 2
[T (ad 'y —y;)
1<i,j<k

2
T (v —y) " (vi — Pyj)(vi — a 2y;)
1<i<j<k

G(Y!) = (qd™) ™"

with the parameters
51 = qu_27§2 = q27 673 = d_2

we construct an algebra homomorphism,

@ Sh k F)lar.a2.05 = Sh ( )|Q1ZQf,q~2:Q2ﬁSZQ3QfI given by

_1y K _ 2
(qa=")" - TI (¢d™"yi —y;)
1<i,j<k
2
1<H.<k (yi — ;)" (i — ®y;)(yi — a7 2y;)
<i<j<

Yo f(XTIYF) = f(qd YY) -

As explained in the beginning, there are only 4 possible choices for A\. The
above are the cases that with A = ¢gd in case 1 and A = ¢d~! in case 2. To get to
the remaining two cases, we just need swap the roles of X¥ and Y. We leave
out the details and simply state the results:

3.6.2 Case 3 and Case 4
For A =q¢ 'd:

@Sh k k “h 92,43 - Sh ( )|<71:lh_2,1722112_1>L1~3:Q1Q3_1 given by

Yoq: (X1 Y} ) = f (Xf|qd*1Xf) - G(XT)

15



For A=g¢ 'd~:

@Sh k k ‘th,qzyqs - Sh ( )|¢71:tI3Q1’1@22112’1473:%’2 given by
Yo (X1 V) = f (XFladXT) - G(XT)

3.6.3 Summary of first example

Here, we shall point out that there are no other specializations because we
have to map both X¥ and Y/ to the same color, and we know that the quo-
tient between their images must be our choices of A, namely qlil, q?jfl according
to the wheel conditions. The last thing we need to check is whether Y(f)

satisfies the wheel conditions of S’h:I .This is clear as we examine the vari-
gh

ables in Y} which is showed in figure 5. For example, as to case 1, where
A= qd. If Shg:[ wheel in color (0,0,1), then there exist x,,y, and z., such
2
that y, = gdz, and z. = gd~'y,. Since z; = qdy;, let’s assume y, = t, then
= qdt,y, = ¢>d*t,y. = ¢*t, therefore, y, = Gdy,,y. = gd~ 'y, which is ex-
actly the wheel conditions for S hA .

aly
Here, we have established the blmplest case of n = 2 of Theorem 3.2.

Variables Variables Variables Variables Variables Variables Variables Variables
Xi Yi X Yi x; Vi xi Vi
qdt t qdt t d7 1t t d~ 't t

i=qa T “. a-gqar ¢

[ x; = Ay; N x; = Ay; .
qidt ’ ‘ qd®t . dit ¢d 't q%t ‘ ' q*d~'t q%t
Pddt q2d2t Pt q2d%t Pd3t q2d%t qdt d%
Wheel in (00 1) Wheel in (11 0) Wheel in (00 1) Wheel in (11 0)

Figure 5: Check of wheel conditions

3.7 From Shx to Shgx[

al;
We utilize the same idea as explained in the section 3.4 to construct the ho-
momorphism Y39 : Sh: (k k,n) — Sh;{ (k,n). In Sh;{ (k,k,n), we have
2 3
variables of X1 1,X2 1 and X3 1 in three different colors. To simplify nota-

tions, we rename X1 1 X2 1 and Xg’{l by X¥,YF and Z7 respectively and set
X% as color 0, Y} as color 1 and Z} as color 2. Since X¥ and Y} have the
same dimension, according to the analysis in section 3.4 on constructing alge-
bra homomorphism from Shz (k.k) to Shz (k) and the shuffle factor of w®

2,57
we specialize Y{* to AXF with A € {ql_l,q3} and Z7' to pZ7. Therefore, the
map Y3 is of the following form:

Yoo f(XFIYFIZT) = f(XPAXT|uZY) - G (XT|27)

Our goal is to determine the rational factor G (X|Z7'), as well as A and p in
terms of ¢, d, and get the explicit relation between ¢1,¢2,q3 and qi,¢2,q3 so
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that the map of Y39 is compatible with the shuffle product. By utilizing the
wheel conditions, we find that A € {q_ld_17qd_1}.

3.71 casel: A=q3=q 'd!

We are looking for a map of the following form:
Tao: f(XTIYVF|ZTY) = f(XPlg™ 7 X2t - G (XT127)

In order to find the rational factor of G (X{|Z}") that ensure Y3 is an algebra

homomorphism, we need to analyze the conditions that G needs to meet.The

numerator of G should be able to clear off the denominator of

f(XFlg~rd=' X} |pZy). In addition, the denominator of G should create the
1<j<n

desired pole involving [[ (x; —z;) in S h:[ (k,n). Finally, it should clear off
1<i<k gt

zeroes due to the extra wheel conditions of Sh; (k,k,n). Based on the above
3

analysis, we have:

—
IN
S,
IN

n

1<II<k($i"q71d71$j)1 '<k(q*1dflxi‘*#?ﬂ(uzj"xﬂ
01> <1<
G (X7|27) = <j<n “Chn
Ead 2
(i — zj) (i — ¢?xj)(wi — ¢ 2x))
1<i<k 1<i<j<k

Let f (Xf|YF|2Z7) € Sha (k,k,n) and g (XFH|VEH |z € Sha, (1,1,m).
3 3
The choice of A, u and G should ensure that the equation(14) holds.

XFAXE|uzp ) G (X1 z¢ )

3) —
w : =
(XﬁiilAX;’iiiluZﬁi{” G (Xt121) G (Xl Zidt)

XENXE|uzn
w® k+l1| k}rlm 1n+7n (14)
Xk+1|>‘Xk+1|:U‘Zn+1

Let’s compute each of the factors in the equation (14)
L®) XFNXF |p2t _Le (KT e (AT e[ edr
Rty y k| ontm | = @i k1 i, k+1 i +
in1|)‘XkI1|NZnL ij:l /\in1 MZ:«LL+¥L
Xk AXE zZ7
3 3 3 ’u

wz(,i)Jrl Ii+l wz(z)Jrl n-&l-m '%(,i)ﬂ kil ’

AXi 1Zni X1

k k n

(3) Xy 3 [ AX (3) BZy
Wii—1 < Zn+m> "Wy (XkH "W N 'eas
HLpi1 k41 k41

17



That is,

n n<r<n4+m _ —9 _
Xl]:i“/\xlfiingiyl Ti — UZp d=lq¢ lz; — pz,

k<j<k+l <

1<i<k

I

w —q Py d7 e —xy) @ —q Pay d g e — qdlxj).
1<i<k

ri—x;  w;—dlqTley x— d~lq tw; —x;

n<s<n+m _9 k<j<k+l _q _9
H Zr—q 2 H <d pzr — qT; pzr —d=2z; ) (15)
1<r<n Zr — Zg 1<r<n Uzr — T U2y — dfqulxj

The rational factor of G is,

G (X{C+l|uz?+ﬂ1) o Ck+l,n+m .
G (XEuzt) G (XEFINZIT) ~ CrnCim

k<j<k+l . 4
Jﬂ (i —d~'q 'ay)(z; —d g i)

P (g )iz, — )

S (i — ¢®xj5)(x; — g 2x5) 1Zi<h (z; — zr)2
k<j<k+l , ,_q _
T g ey — pz) (per — 25)
11 5 (16)
1<r<n (l‘j —ZT.)
The RHS of the equation (14) is :
k<j<k+l ~_9 n<s<n+m ~_9
H Li—q "Tj H Zr —4q "Zs
1<i<k LT 1<r<n T T Fs
<r<n-+ T~ T~ 1<r< T~ T~
" Tﬁ " (v; —d1qz.)(z; — dqz,) . ﬁn (zr —d71qz;) (2, — dqzy) (17)
2 2
1<i<k (@i — z) k<j<ktl (zr — ;)

Comparing terms of (z, zs) in the equation of (15),(16) and (17) we get ¢ = q.
Comparing terms of (z;, z,) with 1 <i < k,n <r < n+ m, in the equation of
(15),(16) and (17), we get condition:

(Gd*,qd} = {qd "', ?d*1} (18)

Comparing terms (x;,2,) with k < j < k41,1 < r < n, in the equation of
(15),(16) and (17) we get condition:

{gd",qd} = {qdu™",d"*p""} (19)
As far as condition (18) is concerned,
Gd ' gd=qd 'p-@Pd’p = ¢ = ¢Pdp® = p=(qd) "/
When p = (gd)~"/?, we have qdp~" = (qd)*/? = ¢*?d*pand d=2p~ " = ql/id*?’/2 =
qd~'p. Therefore, (18) and (19) are compatible, and we also have {d*'} =
{(q1/2d3/2):|:1}_

The remaining thing to be verified is that the image satisfies wheel condition of
Sh 5 (k,n).
gla
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1.

3.

The Sha{ wheel in color (0,0,2) implies vanishing as = 4, ’;Zbc =qd
gls ¢

for some 1 < a,b < k,1 < ¢ < n. Now p = (qd)~/2, we have %= =

c
q%d_% = 55_1 and ;—i = %d qd which is exactly one of the wheel
conditions for Sh 5

Ve

gly
The Sh= wheel in color (1,1, 2)implies vanishing as g w. qd, and
g[3 ) HZc _
% = 4. We have 7+ = qd: = qd Z = = qzd~% = gd ! which is
exactly one of the wheel conditions for Sh= 5

gl

The Sh:[ wheel in (2,2,0) and (2,2, 1) are checked in the same way.

gls

A direct computation shows that the constant c,n can be nicely incorporated
into G, by replacing G with G:

[l (de; - d?qx;)

=~ 1<i,j<k
G (Xkzy) = :
P = (o =)@ =)
1<i<j<k
T @i addia) (e — g Rdiz)
11 2
1<i<k (i — 2r)
. . 13 5 3,3
with parameters g1 = ¢~ 2d2,q2 = q2,q3 = ¢ 2d " 2
we have constructed an algebra homomorphism:
@Sh (ks )lgsga,05 = Shay (K)o gy o1/ g0 o e given by

T3z

i) - 1 (bl ta ' xtlg bt 2y) - G (x})127)

In addition to Y{* = ¢~ 'd~' X}, we have three other specializations to consider
which are Y = ¢ 1dX¥}, Y = ¢d X} and Y} = qd~1 XF.

3.7.2

case 2: A=gq; ' =qd?

When Y = qd=' X}, we are looking for a map of the following form:

Tso: f(XTIYF|Z]) — f (XﬂqdilXﬂMZ?) -G (Xf\Z{L)

The rational factor of G is:

G (X7|2y) =

1<j<n
[T (zi—qd'zy) 1] (qd @i —pzy)(pz — i)
1<i,j<k 1<i<k o
1<j<n ) cVkn
(wi—2)" II (20— ¢xy) (@i — g %zy)

1<i<k 1<i<j<k
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For f (XF|Yf|27) € Shz (k,k,n) and g (XpHyEt izt € Shz (1,1,m)
3 3

w® k§f|)\)ﬁl|lﬁz?+ ) _
Xk+1|)‘Xk+1|NZZ+{n

k<j<k+l _ _ _ _ _ _
]1:[ <:ciq 2z, d Yo, — ?d 'z T —q 2z qd Lo —qd lzcj).
1<i<k Ti =T i — qd~la; Ti—Zj qd~'z; — x;
n<sﬁ1+m <xz _ (]d_lllzs - qd_2$i _ C],UZS> 'n<sﬁ+m (Zr _ q_225) .
1Si<k Xy — WZs qd=la; — pz, 12 2 — Zs
k<j<k+l , _ 8
]1:[ <d Yz, — qz; e —q¢%d ij>
1<r<n War = Zj pzr — qd=ta;
and the ratio of G is:
G (X{C—H‘Z{H_m) o Ck+l,n+m .
) =
G (X7|zy) G (X5 01Z20) CenCim
k<j<k+l _ » <s<n+ -~
jl_[ (xi — gd ™ ay) (x; — qd @) " Sﬁ " (gd ey — pzs) (pzs — mi)
T G ) C i ) 1<i<k (2 — 25)°
k<j<k+l _
’H (qd 'y — par) (pzr — )
2
1<r<n (‘rJ - Z”‘)

By taking the product of above two factors and comparing the terms of (z,, z5),

(i, x5), (x4, 25), and (xj, 2,), with the corresponding item in

2) X7 IAXF|uZy /
XX w2zt

w' 2,

-1/2 ~ 1/2 ~ ~ -1
),wehave,u =q; ,q1 = 4191 ;492 = 42,493 = 434,
k+1 n+1

The remaining thing to be verified is that the image satisfies wheel condition of
Sh:[ (k‘, n)
gla

1. Shgﬁ\[\?’ wheel in color (0,0,2) implies vanishing whenfe = %,% = qd

which is equivalent to
Lo = Gd !, 2= = gd.

7wb

o = q%d_%7 ;—z = q%d% which is also equivalent to

Ze

2. Sh= wheel in color (1,1, 2)implies vanishing Whenqdj“’“ = qd, & =

aly HZc qd=taxy
4 which is equivalent to 7= = qzd?, j—; = ¢2d—% which is also equivalent
Ta _ = Ze _ -1
tozfqd,z—bfqd .
- . . . s 1. HZa Te _— 4
3. Sth[3 wheel in color (2,2,0)implies vanishing when o = qd, e =

which is equivalent to 2= = q%d% = qNCT, ﬁ—; = q%d_% = qNJ_l.

. . . . . “ _ a1 .
4. Sh;\[a wheel in color (2, 2, 1)implies vanishing when 5~ = qd 14 uz:: =
qd which is equivalent to 2+ = q2d=% = qd !, = q:d? = qd.
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By straightforward computation, we can incorporate the constant ¢, in G by
replacing G with G, and we will get algebra homomorphism:

@Sh (ks k)l gusga,00 = Sha (ks gy 12 G0 g 2o ggr /2 8EVeR by

91=4919, ,92=92,93=439;

Too: f(XENFIZY) = £ (XFlad ™ XElqba 3 27) - G (xF127) with

[T (wi—qd™'z))

=~ 1<i,5<k
G (Xkizm) = .
1) (@~ )~ a7
1<i<j<k
1sren (d_%q%xi - z,«)(d%q_%azi —2)
11 ;
1<i<k (i — zr)

In summary, we have two homomorphism of T3 5, which are:

1 ~
Too: £ (XEVF1ZE) = 1 (XElasXElad 27) - G (XF127)

1 ~
oo f(XEVFIZE) = 1 (XHlar XElgy P 27) - & (xF127)

3.8 From Sh: to th[

gl3
We can construct the homomorphism Y3 ; from ShA[ to ShA in two ways.

One is a two-step method. That is, we firstly construct the homomorphlsms
Y32 From ShA to S’hA , then construct the homomorphisms Y5 ; from ShA[
g

to S hA , and ﬁﬁally compose two homomorphisms T3 2 and T3 ; together. The
gl

other way is a one-step method, which is similar to what we have done in

constructing the homomorphism from Sh=z to Sh:[ .
gly ghy

In this section, we chose the latter. We specify X color 0, Y{* color 1 and Z¥
color 2. We propose the following:

Proposition 3.9 There are four ways to map ShA‘ to ShA via a component-
wise in the general form: Y31 : f (XF|Y{|ZF) — f (X¥ |)\X1 AuXE) -G (XT)
for \p e {as, a1}

We will provide the more specific constructions of the four mappings in the case
studies bellow:

39.1 Casel: A=pu=gq3=q 'd!

In this case, we specialize Y}* = ¢~ 'd"1X¥, and ZF = ¢~2d-2X}

The factor of G (XT) should meet following conditions:

1. The numerator of G (X{) should be able to clear off the denominator of
F(XTIAXTIAXT):;
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2. The denominator of G (XF) should create the desired pole in Sh; , and
1

clear off zeroes due to wheel conditions. Based on the above analysis, we have:

[1 (vi—q'd ;) (g d ey — q72d2ay) (¢ 2d %2y — )
1<s,j<k
G (X}) = - Cy,
[T (@ —2)% (i — )’ (20 — q %))
1<i<j<k

In order to determine the explicit relation between ¢, g2,q3 and ¢1,q2, g3, let

f(XEYEIZE) € Shy, (kb k) and g (XEHYEZET) € Sha (1L4D).

We write down the shuffle factors:

w® XX XY _
Xk-‘rl |>\Xk+l |)\,U,Xk+l

k+1 k+1 k+1
k<j<k+l _9 _9 _9
H (xi—q Tj Ti—q ' Ti—g xj>'
1Zi<k £C7;—(Ej xi—xj xi—xj

k<j<k+i
<ﬁ+ ( d~ Yoy —xz;) m —q td3x; q_ld_%i—q_ld_zx‘j)

11y o a=2d-27  g—1d—1lg. — g—24-2.
1Sigkxlqdmjxlqujqulquj

k<j<k+l
<J1:[ ) (q_ld_lxi —qd'z; qPd 7w —qr; g ?d e —d )
\Ziep N @HdTlmi—zy o g7y -y qTRd TR — g AT

G(xkth

The ratio of WE(XD’ is equal to :

k<j<k+l 1 i o o
jﬂ (@ — g 'd " y) (¢ d " ey — g 2d2ay) (¢ 2d 2w — )
2
1<i<k (mi_xj)

5 .
1<i<k (Zl - qzxj) (xl - q72xj) GGl

k<]ﬁk+l ((%’ —q td ) (g d ey — g 2d %) (g2 d P — fﬂi)) Grii
2

The product of the above two factors is:

w@,)( Xt ) G(xE

XERXER DXt ) GXPGX])
k<j<k+l _ o
-1 <ﬁ (zi —qPx)(xi —q”'d 33%)(331‘ — ¢*d’z;)
6710
gd 1<i<k (zi — zj)

We need to verify that the image satisfies wheel condition of Sh= .

gh

—2 -2
1. The Sh;{3 wheel in color (0, 0, 2) implies vanishing as q,zzi%b =119 ic Ty —
qd for some 1 < a,b,c < k which means 2= = &5, 2 = ¢%d’ is equal to
W 1 1
% =4 %’ =43 -
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—2 -2
2. The Sh;{3 wheel in color (O, 2,2) implies vanishing as qiixa = qd, %
gd~—! which means o = q3d3, =g ~1d=3is equal to L= = g5 !, o = a

3. Other cases can be verified similarly.

Thus, we have constructed a homomorphism T3 ;

@ Sh k ks k)larga.as = Sh ( )|¢I1:tI1q;2ﬁz:q2ﬁs:fI§ given by

Y31 : (X1 YF|1ZE) = f (XFlgtd ' XT|q 2d 2 XT) - G (XY) with

1<i4,j<k
G (XF) =
() (; — z)° (2 — ¢?2;)°
1<i<j<k
[T (¢72d 2z — ;)
1<i,j<k
<iyJ — -(—q3d5)k
(r; — q—2x)
1<i<j<k

The existence of such constant ¢ is due to the criteria of Remark 3.6.

39.2 Case2: AN=p=gq; ' =qd!

In this case, we specialize Y}* = qd 71 X¥ and ZF = ¢>d—2X¥
The G (X}) should be of the form:

1<H<k (2 — qd~" @) (qd™ s — g*d~2a;)(¢Pd?x; — ;)
0,1
e
(i — @) (2: — q2)* (2; — g~ 2a5)°
1<i<j<k

G (xt) =

We write down the shuffle factors:

i k<j<k+l _ 3
w(3>< k)f’*IMifllAquk l) - 11 (x—q%a> .
T T T .

Xy AT X 1<i<k T Ty

k<j<k+l _ _ _ -
]1—[ qgd"%x; — ¢°d ij ' ¢?d3z; — qr; T — ¢d 3:6]- .
gd~lz; —¢?d2x; ¢?d 2z, —z; x —q¢*d %z,

1<i<k
k<ﬁk+l qd 'z, —qd 'z; ¢Pd?x; — ¢Pd%x; d7'm — Pd ey
gd~lz; —x; ¢?d=2x; — qd~z; x; —qd~lx;

1<i<k
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G( k+l)

The ratio of W

is equal to :

k<j<k+l _ _ _ _
jH ((xi—qd L)) (gd” wi — ¢*d a5 (¢%d 2%—%—)),

2
1<i<k (xi 7xj)

k<ﬁk+l ((xj —qd ') (qd ' xj — ¢?d2x;) (¢Pd 2y — Iv)) G

2 2
1<i<k (zi — ¢?xj)" (zi — q~2x;) GG

The product of the above two factors is:

m( XAt At ) Gt

XX X ) GXHG(x])
k<j<k+l _ _ B
jI (2 — g %) (v — g ') (2 — ¢*dPxy) Gy

3
1<i<k (i —xj) GGy

The last thing to be verified is that the image satisfies wheel condition of

Sh= .
gl
N . . . C 1. o _q ¢*d" %z, _
1. The Sh§[3 wheel in color (0, 0, 2) implies vanishing as def%b =g, 29 = -
qd for some 1 < a,b,c < k, which means 7+ = 3—3 = q3_1, Ly — g1 =
0
2. The Shgﬁ3 wheel in color (2, 2, 0) implies vanishing as % = qd, ﬁ =
. 3 3~
gd~! which means i—: = d— =g, = Pd3=g;"

Thus, we have constructed an algebra homomorphism

@Sh k k k %Sh ( )|q1 111412 q2,33= ¢I3q1 given by
T3 (X1 \YF|ZE) — f(XFlgd * XT|g?d2XT) - G (XT) with
[T (2= qd™"a;)" (@ — g 2d%;)
1<i,j<k
G (X}) =
(1) I (@ — )% (@ — ?x)* (2i — q2a5)°
1<i<j<k

393 Case3: A=qg=q¢ d'u= q1—1 =qd!

In this case, we specialize Y}* = ¢~ 'd~' X} and ZF = d=2X}
The G(XF) should be of the form:

[T (zi—qtdtzy) (g d ey — d22;)(d 2 — x;)

1<i,j<k

G(XF) = -C
) (2 — 22 (@ — ?a;) (s — g~ 2,)? *
1<i<j<k
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We write down the specializations of shuffle factors:

k<j<k+l _ 3

w(?,)( XX MXE l) T (96—612%) .
T + T s
Xk+1|)\Xk+1|)\ Xk+1 1Zi<k Li — Xy

k<jlf[k+l< q td %z, — qd~ 2:83 d- 3:&-‘1% xl—qd 3%)

\Zich “ld-tlx; —d2x;  d72x; — x4 —d 2z,
k<j1§[k+l (dlxi —d'ay ¢ e —qd ey d7%n - d )
\Ziek \Ti g ldlxz; g ldtw; —x; d=2x; — g ld 'z,
k+l
The ratio of W is equal to :

’“<ﬁ““<<xi—q—ld—lxj>< e - d ) (- xz—%))

2
1<i<k ('Tl - xj)

k<ﬁ+l (w; —q td ") (g td”wy — d 7P (d 2wy — @) | Gy
1<i<k (@i — q2ffj)2($i — q*2srj)2 GGy

The product of the above two factors is:

3) XPIAXTF A XY G(X{)
w . —
XEUAXFH X fT ) GXHG(XT)
k<j<k+l _ _
<h (2, — q %)) (2 — qd®x;) (x; — qd3x;)

3
1<i<k (‘rl - xj)

The last thing to be verified is that the image satisfies wheel condition of

Sh= .
gl
1. The Sh:[ wheel in color (0,0,2) implies vanishing as 72— = 4, d;zﬂ”b =
gl €
qd for some 1 < a,b,c < k, which means i—‘; =qd3 = q~1_17 o= qd® =
Gs -
2. The Sh§[3 wheel in color (2,2,0) implies vanishing as % = qd, dfi?bxc =
qd~—!, which means fo = qd® = g3 ", o= qd=3 =gt
Thus, we have constructed a possible algebra homomorphism
@Sh (ks ks B)lgs,g2.05 = Sha ()l —g2qrt s dmgzar  EEVED DY
Ya1: (X1 Y| ZE) — f(XPlg~'d ' XT|d2XT) - G (XT) with
[T (zi—q'd te;)(zi — qd o) (2 — d?xy)
1<i,j<k
G(X7) =
[T (=) (i — ) (i — g %a5)°
1<i<j<k
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3.9.4 Case 4: \= qfl =qd Y u=q3=q td!
In this case, we specialize Y}* = ¢qd~1 X¥ and ZF = d-2XF
The G (XT) should be of the form:

[T (zi—qd 'zy)(gd  wy — d2z;)(d 22 — x)
1<i,j <k
2 - Ck,

G (XF) =
() (@i — ) (s — ¢2x;)* (i — q~2a))
1<i<j<k

We write down the specializations of shuffle factors:

o [ XEAXE DX B ’“<ﬁ’““ zi—q 2\
Xk-‘rl |AXk+l |)‘/J'Xk+l - T — T,

k+1 k+1 k+1 1<i<k
k<j<k+l _ B _ B
i:[ <d Yo, — ?d 'a; qd 2, —qd 2x; d73%; —qx; xi—qd ij)
_ 1 1 _d—22. d-2p — 2. o _d—2,. |
1 Zi<h x; —qd~lx; gd=tz; —d~2x;  dCw—w; w1 —dTiy

k<j<k+l
<]1:[ * (qdlxi —qd 'z, . d2z; — q2d2xj>
\Ziek gd~lz; —x; qd—2z; — qd~'x;
k+l

The ratio of W

is equal to :

k<j<k+l —qd'z;)(gd  x; — d7%x;)(d 2wy —
T (( qd”'z;)(q i) >>

2
1<i<k (mi - xj)

k<j<k+l
H+ (; — qd~t2i)(qdta; — d~2w)(d 22y — ) | Gy
1<i<k (zi — quj)2(xi - q*ij)Q GrG

The product of the above two factors is:

<g)< XFAXFAuXE > Gxfth

XEPRDXFR X ) GXD)G(xY)

k<j<k+l _ —
jH (2 — ¢ %) (@i — qd’x;)(z; — qd"°x;)
3
1<i<k (mi - xj)

The last thing to be verified is that the image satisfies wheel condition of S h;

Since q1, g2 and g3 is equal to those in case 3, they also satisfy the wheel condl—
tions. Thus, we have constructed a possible algebra homomorphism

@Sh (k ks k) = Sha (K)lg,—qzar ymgs domqiar®  EEVED DY
Y31 : (X1 YF|ZF) — £ (XFlgd ' XT|d2XT) - G (XT) with
[T (zi—qdta))(qd e, — d 2a;)(d 2z — xj)
1<i,j<k

G (XF) =
() (2 — 25)* (2 — ¢?x5)* (xs — g~ 22;)°
1<i<j<k
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In summary, we have constructed 4 homomorphisms of the following form:

@Sh (B, s k)l 200 = Sh (K)o .
Ysq: (X1 |Y1 |Z1) = f (Xf|)\Xf|)\qu) -G (X{C)
with the following values of A, p and q1, g2, g3 :

A=q¢ld i p=¢"d" G=06"0=q00=7q i=q.d=q¢d*
A=qd ' p=qd! G =00 =G =q g=qd=q°d
A=q'd  u=qd! 61=qfq§1,q~2=q2,673=q§q1—1 i=qd=d

- W e

A=qd ' p=q¢'d"  G=d¢  B=¢pda=dgey" (=qd=d°

3.10 How many ways to map ShA — Sth
1

First recall that we have 4 specializations Shg:I — ShA
2

Next recall that we have 2 specializations ShA[ — ShA[ Now combining the
als gla

above two specializations, we have the following possible values of (g, cZ) q=q
always, and d € {d3¢?,d3,d3q~2}

3.10.1 Case 1: ¢ =q, d= d3¢?

XTI ZY) = f(2YlasZi|a327) -G or
f(Xf|Y1k|Zf) (Zl‘q?)Zl |q31Z1) G

3.10.2 Case 2: ¢ =q, d= d3q2

f(Xf|Y1k\Zf) (Z1 |Q1 1Z1 |Qf2Z1) G or
f (XﬂYlk\Zf) - (Z1’|Q1 1Zl |Q1Zf) -G

3.10.3 Case 3&4: j=¢q,d=d3

FXPWYFIZY) = f(ZF|gsZF lasq, ' 27) -G or
f (Xl vy |Zl> = f (Zf|q3Zﬂqu{“) -G
f (Xl ‘Y1 |Zl> = f (Zﬂq;lzﬂ%fh_lzf) -G

(X1 ‘Y1 |Z1) = f (Z1|Q1 1Zl |Q3_121) G

We obtain the remaining 8 from the above through cyclically rotating, which
we demonstrate the notion in the graphs below. Through 2-step method, from
Sh= 3, - S hA ) hA[ we are left with 8 specializations that can be represented

2 1

by the graphs below.
They are:
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Figure 6: Symmetry of the specializations

1. AZQ?’:qd’AIM \/> q3 d 1/2d/2: 2d2_q3

~ —1/2
2_)\:(13:% Au:\/ﬁ'qlz\/%w]ng, 2=q
3)\:(]5:57 )‘/1’: qidﬂq\:;l: /qidq?’/2d3/2:qd:q371
~1
A d=g= M=\ud =\ut m=r=6/u
5. A =g l=9 Au=+/2 Ga=/T. L __ —g1g=2 = g-1/2,3/2
: q1 29 H q 43 \/; qi /24372 q q qs

6. =g¢'=9 M=VT-a=Vgda-q=yI 2l Jad=d=

TA=g ' =q/d, u=1/g/d-G5" = \/a]d- ¢ 'PI* = ¢*d = g7 /2q;*

8. A=q'=q/d, Iu=+/q/d-G" =/q/ d-q/d- = —q/dQ—q/q*S/2

This matches the 12 direct specializations obtained from mapping Sh; —

S’hA[ , which stemmed from three choices of initial point 7, and 4 choices of qs
g 1

Vsqf on edges fromi — i+ 1and i +1 — i+ 2.

Recall that when we tried to generalize from S h; - S h:[ , there were 3-2371 =
3 ah
12 direct specialization maps.

So we expect that all composed specializations Sh:{ — Shg:[ =, ...,

n ny

Sh= —>Sh:[ with 1 <n; <,...,<nj; <n to be the same.

Olny ghy
Thus, we have explicitly presented 12 mappings, which is a specific case for the

following, more general setting.

3.11 From Sh= to Shg:[

Olnt1

Here, we have arrived at our main proposition. In order to construct more gen-
eral homomorphism Sh= — S’h:[ , we next construct the maps of Ty, 411 :
g n

g m+n
Sh=  — Sh=
gl

gt
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Theorem 3.12 (Second Theorem)

There are n - 2"~1 homomorphisms:

T @ Sh;ﬂ (u)‘m,qz,% - Shg:h (k) |¢717§2,§3

For the special case of m = 1, there are n - 2"~ many specialization maps from
the imaginary part of Sh= to Sh; . For simplicity, we let ngf = XF, and
1

gty

Y, 41,1 is in the form of
Tn+1,1 : f(X(?:valljfv T »X:fff) - f(Xf7)‘1va)‘1va e 7Xf H)‘l) -G

We know that, for 1 < i < n, \; € {g7*d™!,qd"'}.We are interested in the

general case, not just Ay = Ay =,...,= A\,. The G (Xf) should be of the form:
(i — Aag) (@i — Aoxj) - (@i — Any) (s —z; T A7)
1<i,j<k 1<r<n
G(x}) = -Cy
(s — ;) (2 — %) " (w; — ¢~ 2a))"
1<i<j<k
For f € Sh=  (k,...,k)and g € Sh=  (I,...,1), the specializations of shuffle
Ol N — 0lh1 N——
n+1 n+1
XFLXE T M
factors w(™+1) =1 is:
XXt T A

k< j <kl
<]1:[ * (a:l - q_ij>n+l Cd7lw— gl d Tl —glezy

1Zi<k T; — SC]‘ T; — )\1{Ej T; — )\Ql'j

dtx; — qInT; d"M - Az — qxr; AT — qd’lxj

xi_/\nxj )\1)\an —l'j )\11’1‘—%]'

Ao — qd’lx]— A i — qdilxj x; —qd A AnZ;

)\gl‘i — Xy )\nml — Xy xX; —)\1 )\nmJ

The ratio of G is:

k<j<irt (@i — Mxg) (g — Aaxy) - (2 — M) (@ — ;. [T A7)

H 1<r<n

3
1<i<k (i —xj)
pjkil (T — Mwe) (5 — Xowy) -+ (x5 — Ap) (; — i [T A7H)
1<r<n
H 2 n ) n — N Ok
1<i<k (i — ¢®x5)" (xi — ¢ 225)
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Taking the product of the above two factors,we have

n

X{vaX{C H )\1 k<j<k+l
w(n-’rl) Z=1n .G (X{g) _ H d—l H )\r
XEH, X 1:[ i 1<i<k 1<r<n

k<j<ht (@i —q ) (x —qdey [T N (@i —qd ey T A

H 1<r<n 1<r<n

3
1<i<k (zi — zj)

Therefore, we have

n
Xfn XTI N k<j<k+
Wt ’Zln .G (Xf) = H w® ( ) d! H A\
Xt X TT N 1<i<k 1<r<n
TR S i i
i=1
r<n r<n
{d1,G2,G3} = {¢*,q7"d H A gt T A} that is § =g, d = d T A7
1<r 1<r
k<]§k+l X
ooy = aoe
1<i<k

We need to verify the wheel conditions for this mapping and choice of A:

1. The Sh=  wheel in colors (n,n,0) implies vanishing as ==¢ [] A\, =

8t FOr 1 <r<n
gd and 2> [] X' =gd~!, which means 7% =qd [[ A '=dd=
¢ 1<r<n ’ 1<r<n
1 _ e |
q37§2i—qd I[I Av=aqd'=q .
’ 1<r<n

2. The Sh=  wheel in colors (0,0, n) implies vanishing as === ] A\ ! =

8lnpa Frb 1<r<n
gd—! and 2:: 2 T] A = qd which means 22> =qd~! ] N\ =gd ' =
1<r<n 1<r<n
(jl_land —qd I Al—qd—q3
1<r<n

3. Other cases can be verified similarly.

Therefore, we have constructed a homomorphism Y411
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TnJrl 1 Sh2 k e k 0 7 Sh2 k n .
' g[n+1(g/’—’)|ql’q2?q3 9[1( )“il:th [1 X', Go=q2,ds=qs ] Ar
n+1 r=1 r=1

given by

Toira s FOXOT, X0E - X0F) = FXE X XFP][ M) -G
=1

with
[T (zi—Mzg) (@i — Xawj) - (wi = Ang) (s — ] A'ay)
1<i,j<k 1<r<n
G (X7) = 0 . -Ch
(= 25)* (i — q%a;)" (w; — g~ 2a)
1<i<j<k
k<j<k+l )
_1\n+ —(n
Cr= I (=) = (a0
1<i<k
Note:
LIM=X=...=\, =¢g3 then §1 = qig5", §3 = ¢3¢%
2. I =X =...=X\, =q ! then 1 = qiq?, G5 = q3q; "

3.13 From Sh= to Sh:[

g[m+n

gln

Finally, we shall establish our main result of Theorem 3.1 by providing all of

the details for the claimed construction. Generalizing the above constructions

to a more general setting, we map Shx — S h:{ . Assuming n > 2, we want
gl,

Olmtn

to construct algebra homomorphism Y., 4p

Yoinn: @ Sh= (ko ko k1, kno1)lgrgoigs —

o] S
ko,k1,....kn—1 e ma1 ne1

Sh? (kOa sy kﬂ*1)|51762@3
—

gl,

n
n

0.k v 1,ko mko vm+1,k: man—1,kn_1 R
For every f(XQ1 XL X X XTI ) € Shy

the algebra homomorphism of our Main Theorem is as follows:

Theorem 3.14 (Main Theorem) The mapping:

We have algebra homomorphism:

Tern,n : @ Sh= (kOa-~-7k07k17'"'akn71)|Q17Q2,QS -
g N — e —
kok1seeskn—1 1 ~
Sh; (k‘o, s kn*1)|61762)63
n
—_———

n
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satisfy component-wise homomorphism via:

. 0,ko 1 kU m ko m+1,k1 m4n—1,kp—1
Tm-i—n,n . f (X X X m+1,1 7" 7Xm+n—1,1 -
n—1
0,k 0,k 0 k 1,k n—1,kn_1
2ot Mzgne, ... UHAZ,ulZ L Zn wil-G
i=1
for1<i< i “1d=1 qd1
orl1l<i<m, i €{q ,qd— 1}
Proof.
We first assume
Al =Xy = = A
3.141 Casel: M =X=,...,=Ap,=¢q 'd!
Th . 0,ko n—1,kn_1 .
e rational factor of G (2’1", ..., 2,11 should be of the form:
ko n—1,kn_1 _
G(Zm yrefn—1,1 ) =
1<j<k1
—14-1 o g—
[T (205—qd 7 205)" [I (¢7™d 20, — p1z1,5)
1<i4,5<ko 1<i<ko
1<j<k1 1<j<k2 1<j<ko
IT (205 —215) II (2145—22;) I (zn-1i—20,)
1<i<ko 1<i<ki 1<i<kpn-—1
1<j<ks 1<j<ko
(216 —p2z23) -+ I (zn—1i I me —205)
1<i<ky 1<i<kn_1 1<r<n—1 O
m _ m Yk
IT (20 —¢%20,5)" (20,0 — 20,5 o
1<i<j<ko
FOI'fGSh2 (ko,...,ko,kl,...,knfl)andg6Sh: (lo,...Jo,ll,...
Ologn ——_——— 1] S N
m+1 n—1 m+1
that is
1 n—1
ko 0,ko 1k, n—1,kn_1
f Zl,—dZ cee mdmZ 1210 D1 Ly
r=1
Z70ko+o 1 o0kotio 1 Oko+lo | kit =Lkt
0,ko+1 qd 0,ko+1 2> gmdm 0,ko+1 " H121 41 005 “n—1k, 1+1
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0,k0 N1k n—1

Lo . 201 ""’Zn—l,ln_l 1:[1 Hor .
The specialization of w(m+™) =l is:
0,kg+lg n—1kp_1+l,_1 "
20,kg41 0 Fn—1,k,, 141 AL Mo
ko<j<ko+lo _9 m+1 1 1 m 2 m
]._.[ <Zo,z‘ —q Zo,j> <d 204 —d Zo,j) <ZO.,i —q Zo,j>
. 11, . T ,
11k 20,i — 20,j 20 —q td 204 20,i — qdzo,;
ko<j<ko+lo k1<j<ki+li

H prz1; — g~ MDA 5 . H d~tq™md ™2, — qpaziy

21 . — —md—mz . —md—mz R 21 s
1<i<ky M1 1,2 q 0,7 1<i<ko q 0,7 M1 1,5
n—1

n—1
X —1 . —1
ko<j<kot+lo Zn—1,:d" " T] tr — 20,5 kn-1<i<kn_1+ln—1 205 — qd ' Zpn_1; [1 pr

r=1 . H r=1
n—1 n—1

1Sisknor 2oy [ e — 20,4 1<i<ho 20— Zn-1j 11 #r
r=1 r=1
n—1ka<j<ka+la _9 n—2kar1<j<katitlat1 ;,_q
Za,i — 4 "Ra,j H H d™ Zai — Qllat1Zat1,j
a=1 1<i<kq a,? a,j a=1 1<i<kq a,? Ha+1Za+1,;5

n—2ka<j<ka+la

H H Hat1Za+1,i — qd 124 5 (22)

z s
a=1 1<i<kaii Ha+12a+1,i a,j

Pulling out the constants of (21), the ratio of G is:

ko<j<ko+lo (Zo,z' _ q_ld_lzo,j)m(Z()’j _ q_ld_lzo,i)m

(ZO,i - qzzo,j)m(zo,z’ - q_220,j)m

1<i<ko
b <j<ki+la 1<) <k
(™md™ 205 —mz1y) I (¢7™d ™20 — paz1 ;)
1<i<ko ko <i<ko+lo
ki1<j<ki+l 1<j<ka
(20 —215) Il (200 —215)
1<i<ko ko<i<ko+lo

ko<j<ko+lo n—1 1<5<ko n—1
H Zn—1,i H Hr — 20,5 H Zn—1,i H Hr — 20,5
r=1 k

1<i<kn-—1 n—1<i<kn_1+ln—1 r=1
ko<j<ko+lo 1<j<ko
(Zn-1,i — 20,5) I1 (2n-1,i — 20,5)
1<i<kn-—1 kn—1<i<kn_1+ln—1
n—2kat1<j<kati+lat1 n—2 1<j<kat1
(2a,i = Ba+1Zat1,5) - 11 II (%a,i — Ma+1%a+1,5)

a=1 1<i<kq a=1 ko <i<kq+la

n—2katr1<j<kati+lat1 n—2 1<j<kat1

(zai = 2zat15) - [T I (2ai = Zat15)
a=1 1<i<kq a=1 ko<i<ko+la

(23)

Calculating the product of (22) and (23) involves massive calculations. But we
can determine ¢, §2, 3, ¢, d and G by analyzing p(zy,., 2s,¢) Which is the prod-
uct of terms containing (zy v, 2s¢), 0 < u,s <n—1,1 <wv,t <max (k. +1,),1 <
r<n-—1.
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1. p(%o0,i; 20,5) in the product is:

ko<j<ko+lo _9 m+1 1 _1 m
_ 20, — q 20,5 A= 20 —d™ 20,5
p(20,45 ZO,j) = H S — : :

—17-1
204 — 20, 20, — d=1zp
1<i<ko 0,2 0,75 0,7 q 0,7

(Z(],i — ¢z, )m (204 — gt z0,)" (205 — g 'd  200)"

m _ m
20,i — qdzo,; (20,i — q*20,5)" (20,0 — 4"20,5)
ko<j<ko+lo 5 q_QZ
—1 3—2\kol 0,5 — 0,j
pz0,20,5) = (=g~ a7 T BV
1<i<ko 0,s ™ <03

We know “:—1_—=0-4 5 the shuffle factors of wg’;) (ZO"f) , when ¢ = q.
0,1 —%20,j ) Z0,j

2. p(20,i,21,5) with 1 < i < ko, k1 < j < ki + liin the product is:

k1<j<ki+l 1 1
P05, 215) = 205 — ¢ "z 20 — ¢ A a2 1
0,i,21,5) = o mgm o T L gmgmtl
R St A REN 087 AL qmd
k1<j<ki+l1 1 1
B 20 —q" A" iz 1
p(20,i; 21,5) = H 20— 21 L gmgmtl
1<i<ko 0,2 1,5 q
k1<j<ki+ly (TL) o s
In order to identify p(zg,%21,;) with const - 11 W4 (Z?’f)» we
1<i<ko ' 7

must have gd = g™t d™ .

3. p(21,4,20,5) with 1 <7 < ky, ko < j < ko + loin the product is:

ko<j<ko+lo —(m—1) 3— 1) -1
21, — g~ M Ddm Dy 20,5

P ———
21— ATy %05

0(21,1‘720,3') =

1<i<k
—m g—m, —1
21— "d "y 20,
21,4 = 20,5
ko<j<ko+lo —(m—1) g— 1) —1
- 21— ¢ (m=1)g—(m+ )/~L1 20,j

p(z1,0,20,5) = PR T

1<i<ky 1,2 0,j
ko<j<ko+lo (n) o

In order to identify p(z1,%0,;) with const - I wil, (%), we

1<i<k; ’ 7

must have cjcijl = ¢ (m=Dg=(mt
Combining ¢d = ¢™**d™*puy and gd—' = g~ m=Dd=(m+D 71 we have
d=qmd™ 'y, as ¢ = q.

4. p(20,4, Zn—1,) with 1 <i < kg, kp—1 < j < kp—1 + l,—1 in the product is:
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n—1 n—1
. -1
kn—1<j<kn—1+ln—1 20,5 — qd Zn—1,j H Hr 20,6 — Zn—1,j H Hor
r=1

p(20,is 2n—1,5) = H £t

n—1
1<i<ko 20,0 — Zn—1,5 [I pr
r=1

20,i — Zn—1,j

n—1
. —1
kn1<j<kn—1+ln—1 205 — qd" " Zpn—_1,; [] tr

p(20,is 2n—1,5) = H =t

204 — Zn—1.4
1<i<ko 0,2 n—1,j

kn—1<j<kn_1+ln-1 (n)
. . . n 20,4
In order to identify p(zo,2n—1,;) with 1<11k Wiit1 (ﬁ)’
1Ko

- n—1 _ n—1
we must have Gd=! = qd~* ] p,, which means § =¢ and d =d [] u, '
=1 =1

T T

5. p(zn—1,i,20,5) with 1 <@ < k,_1, ko < j < ko + loin the product is:

n—1
. —1
ko<j<ko+loZn—1, — qdz0; [1 1y
_ r=1
P(2n—1,is20,5) = P

; -1
1Si<kno1 zp_15— 205 [[ pr
r=1

n—1 1
Zn—1,i — 20,5 H s n—1

r=1 odt H Hr

Zn—1,i — 20,5

n—1
. —1
ko<j<ko+lo [ Zn—1,7 — quoJ H Mo n—1
r=1 —1
pGn-1i205) = ] d [
r=1

Zn—1.4 — R0.j
1<i<kn_1 n=bi ™ 20,5

ko<j<ko+lo (n) R )
In order to identify p(zp—1,,20,;) With const - [T wii (%“),
1<i<kn_1 7
- n—1
we must have gd = qd [] p*.
r=1
6. p(2ais%a,j) with 1 <i <k, <j <kq+1,in the product is:
Fa<j<katla 02z ko <j<ka+la .
- a,i a,j (n) a,i
P(Za,i Za.j) = H . H Wi (z >
1<i<kq a,? @J 1<i<kq @7

given ¢ = q.

7. p(Za,is Zat1,5) with 1 <i < kg, koy1 < J < kgr1+le41,1 <a<n-—21in
the product is:
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ka+1<j<kat+1+lat1

B ai = Qdllay1Zav1; 1 Zag — Mat1Za+1,j
P(Zayis Zat1,j) = f=

Zas — z i d Zai— 2 j
1<i<ka a,i Ha+1Za+1,j5 a,i a+1,j

kat+1<j<kat+1t+lat1
P(Za,zy Za+1,j) = (

Zai — qAftay1Zat1,5 1)

1<i<kq Zavi - Za"‘laj d

In order to identify p(za,i, Zat1,;) With Wik

kat+1<j<kat+i1+lat1 (n) (
1<i<ka

Za,i
Za+1,j )

we must have §d = qdpiq+1 which means ¢ =q¢ and d=dpgy1-

P(Za+1,is Za,j) With 1 <@ < kgyq, ko < j < kg +1s,1 <a<n—2 in the
product is:

ka<j<kq+l -1, -1 -1
‘ H * Zat1,i —9d7 g i1%a Zat1i — Bay1aj

P(Zat1,is Zaj) = flat1

—1 . .
1<i<koys ~ cotbi ™ HatiZaj Fatli T Za,j

ko <j<ka+l 1 1
T [ Fatri — 44T i Zay
P(Zat1,is Za,j) = H P " Hat1
1<i<kai1 a+1,1 a,j

Ka<iSkatla (oo
In order to identify p(z4+1,:, 24,5) With I1 w; (%), we must
1<i<kapr *7
have gd—' = qd~'p, | which is guaranteed by p(zq,i, Za+1,5)-
To summarize, we have obtained that:

n—1
d=q¢"d" ', d=dps,....d=dp,—1, d= dH !
r=1

m

Taking the product, we have: d" = ¢"™d™*™ and d =qgndntl = dq

Since ¢; = dg~',q3 = d"'q~!

fore,

, we have d = q1 q3 2,9 = q1 . There-

G =qaq ", @=4q, §3=0q3q"
fio =3 =,...,= pp_1 =dd ' =gnd" =gq5 "

m -

p=dg A=) = (qd) T =gy

Now, let’s determine the constants Cj,. We know that

n—2
kol ~ koli ;-\ > Kkalat1
Ck'H . _L o kilo , kal1 | kn—1ln—2 L g a=1 _
CrC) qd? R %) | grdmt ] =

d
qm dm+1

= M1, and H2 =5y = HUn—1 =

U,
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Therefore,

n—1 kol
Crti T petemrthote. LN
.y L1 Ha qd?

a=1

n—1 ﬁ
In particular, we can choose Ct, = [] pa Fala—, (—qd*)™> .
a=1

It remains to verify wheel conditions:

1. The Sh=z wheel in color (r,r,r + 1)1 <7 < n — 2 implies vanishing as

gr7rl+n
q3 - Zf:fb =qd,q3 " - th:b = gd~! , which means 7;:_1“}) = qd, 7221;] =
gd—1.
2. The Sh= wheel in color (0,0,1) and (n —1,n —1,0)are verified as
Obmgn ) m
above by using dd~' = [[ wul=q3 ",z =q3 "
1<r<n—1
3. The Sh= wheel in color (r,r+ 1,7+ 1)implies vanishing as ¢ ™
g m-+n
727;::“ =qd ' q - 7;;1’: = qd, which means szilbc = qd, z;tlba =gd'.

4. The Sh:‘ wheel in color (n — 1,0,0) and (0, 1, 0)are verified in the same
g m+n
way.

Therefore, we have constructed a homomorphism Yy, 41

Tornn: @ Sha (koo kokiyeeo o kn)lorgas —

bntn
kok1,....kn—1 ma1 no1
Sh= (k07...,]€n,1)|~ -m - m given by
Ol 0 ——— ©1=q1q3 " ,G2=q2,33=q3q5"
n
. 0,ko 1,ko m, ko m+1,k1 m4n—1,k,_1
Tognn s f (Xo,l s X1 X1 X1 s X1 -

m
n

0,ko 0,ko mr70,ko M= 51,k n—1Lkn_1 :
f (Z071 ,quQ1 S5 Q5 ZO71 243 ZL1 s s (g Zn—1,1n -G with

i m n—11<j<kat1 m
I[I (z0i—q¢'d 7 205) - I Il (2ai—a3 " 2zas1j)

G o 1Shishko a=0 1<i<k,
IT (20 — ¢?20,5)™ - (20 — ¢ 220,5)"™)
1<i,j<ko
n—1 k2
kgl L}
l_[1 fra T (—qd?) 2
o

n—11<j<kqt1

[T II  (2a0— 2a+1.5)

a=0 1<i<kq
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3.14.2 Case 2: M\ =X = ...,= A, =qd !

The rational factor of G (zg”fo, ceey zz:i’f"’l) should be of the form:

o 1<i<h
[T (200—qd'205)" - TI (¢™d ™20 — miz1)
1<i,5<ko 1<i<ko
1<j <k 1<j<hs 1<) <ko
(20 —215) - Il (210 —225) - Il (#a—1,—20,)
1<i<ko 1<i<k 1<i<kn_1
1<j<ks 1<j<ko
(Zu - Mzzz,j) cee H Zn—1,i H Hr — 20,5
1<i<ky 1<i<kn_1 1<r<n—1 o
Uk
[T (200 —4¢%205)" (200 —q 220,5)"
1<i<j<ko

FOI‘fEShQ (ko,...7k0,k1,...7]€n,1)andgEShﬁ (lo,...,lo,ll,...Jn,l),
——

lmgn

bt n
m+1 n—1 m—+1 n—1
That is
q qm n—1
0,ko 0,ko 0,ko 1,k1 n—1,kn_1
f\ Zoa 7EZ0,1 7--~7d7mZ071 sy Dy HMT
r=1
m n—1
0,ko+lo g 0,ko+lo q ZO,kUJrlo Zl,lirll Z’n‘717kn71+ln—l H
Oko+1 7 g “0ko+1 7" "7 gm “0,ko+1 N R L S R P P | Hor
r=1
The ratio of factor of G ignoring the constants, is:
ko<j<ko+lo _1 1 m
<Zo,z‘ —qd™ "z, 20,5 —qd ZO,i)
2 )
204 — G%20.4 204 — 20.4
1<i<ko 0,2 q° 20,5 0,2 q 0,7
k1<j<ki+l _ 1<j<k; _
q"d "z — p1z1,4 H q"d "z — p121,4
204 — Z1.4 20— 21
1<i<ko 0, 7= <1,j ko <i<ko+lo 0,8 = <L,
n—1 n—1 (24)
ko<j<ko+lo Zn—1,i H Hr — 20,5 1<5<ko Zn—1,i H Hr — 20,5
r=1 . H r=1 .
Zn—1.4 — 20.4 Zn—1.4 — 20.4
1<i<kn_ noLi T 0. kn—1<i<kn_1+ln_1 n-Li T A0
n—2kat1<j<kati1+lat1 n—2 1<j<ka41
H H Za,i — Ma+1%a+1,j H H Za,i — Ma+1%a+1,j
Zai — 2 ; Zai — 2 ;
a=1 1<i<kq a,i a+1,j a=1 ko <i<ko+la a,i a+1,j
k n—1,kp_1 " 1
o . ZOJO, Zn—1,1 ! 1:11 Mo .
The specialization of w(™) e is:
0,ko+lo n—1kp_1+lp_1 "
20,kg+1 7 Fn—1,k,, 141 rljl Mo
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ko<j<ko-+lo

-2 m+l 4 2 7-1 m -1 -1 m
<Zo,i —q ZO,j) (d 20,0 — q°d ZO,j) (qd 20, —qd Zo,j>
l I P g1, 1., _
1<i<ko 20,5 — 20,5 20,i qd 20,5 qd 20,i — 20,5

ko<j<ko-+lo 19— 1 k1<j<ki+l _ 1
H iz — qm+ d—(m+ )ZO,j H qmd (m+ )ZO,i — quiz1

md—mz R Z1 s
1<i<ko q 0,5 — M121,5

215 — md—mz .
1<i<k, H1Z1: —¢q 0,7

n—1 n—1
. -1 . -1
ko<j<ko+lo d Zn—1,i H Hr — 420,57 kn-1<j<kn—1+ln—1 20,5 — qd Zn—1,j H Hor
r=1 1
11 : 11

1<i<kpn—1 zn—l,i H ,U/T — zO,j 1<i<ko
r=1

r=
n—1
20 — Zn—1,j L] Hr
r=1
n—1ka<j<ka+la _9 n—2kat1<j<kati+lat1 ;4
H H Zag — 4 “Za,j ) H H d Za,i — Q,Ua+12a+1,j'

Zai — % Za.i — z i
a,i a—1 1<i<ke a,t /JaJrl a+1,7

a=1 1<i<k, g a.j
n—2ka<j<ka+la

a N -1 a,j
H H Hat1Za+1,4 — qd™ "z

z P
a=1 1<i<kq 1 Ha+1Za+1,i a,)

(25)

We can determine q1, §2, G3, G, d and G using the same method as above cases
by analysing the product of terms in (25) and (24):

1. p(z0,i,20,5) in the product is:
ko<j<ko+lo _9 m—+1 2 m
. 200 —q 20,5 20,i — q°%0,j
P20, 20,5) = H i o ‘N —ad—1z0 .
1<i<ko 0,i 0,7 0,5 — ¢ 0,5

( 20,i = 20,5 >m' (20 — gd"205)" (204 — ¢ "dz0,5)"

- (—qd?)kete
— m _ m
204 —q 'dz (20, — q%20,3)" (20,6 — 4~ 220,5)
ko<j<ko+lo 5 q,QZ
—2\kol 0,0 — 0,7
p(20420,4) = (—gd ¥l ] —
1<i<kq 0,3 0,j
If g=gq then
ko<j<ko-+lo ;
_ —2\ kol (n) [ 20,
p(z0.,205) = (—qd )% [ wif
, 20,5
1<i<ko ’
2. p(20,i,21,5) with 1 <@ < ko, k1 < j < ki + l1in the product is:
k1 <j<ki+ly (1 1
pz0i25) =[] 00— "N iz 200 —gmd M ez g
0,9, <1,5) = . g—mdm . ’ . . ’ m+1
1<i<ko 20,1 q d H121,5 20,i 21,5 d
k1<j<ki+l (m—1 1
plzoi,25) = ] (Zo’i I A TR
0,41 21,5) = — iy,
1<i<ko Zovl ZLJ d
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k1<j<ki+l (n) o
In order to identify p(zo,21,;) with const - <Hk Wi i1 (Zf]), we
1<i<ko ’

must have §d = ¢~ (™~ Vd™+ . That is d = ¢~ ™d™H iy

p(21,4, 20,5) with 1 <4 <k, ko < j < ko + loin the product is:

BRI P D g 2 — g™ 20y
p(21,i, 20,5) = H P — : T H1
1 <i<h 21,5 — @A 20, 214 = 20,
ko<j<ko+lo 2 qm+1d_(m+1)ﬂflzo,j
P21, 20,5) = e
1<i<h, 21,0 — 20,5
ko<j<ko+lo
In order to identify p(z1,20,;) with const - I wi(rf)_l (?—’), we
1<i<ky ’ 03
must have

qd—l _ qm—&-ld—(m—&-l)'ul—l.

p(20,i, 2n—1,5) with 1 < i < ko, kn_1 < j < kp—1 + 1 in the product is:

n—1 n—1
, 1
kno1<j<kn—14ln-1 200 —qd " Zn—1j [ tr 205 — 2n—1; [ tr
— r=1 r=1
P(20,is Zn—1,5) = o

1si<ko 20 — Zn-14 I #r
r=1

20,i — Zn—1,j

n—1

. -1
kn—1<j<kn—1+ln—1 20,5 — qd Zn—1,5 H M
r=

P(20,i, 2n—1,j) = H :

20,i — Zn—1,j

1<i<ko
kn—1<j<kn—1+ln—1
In order to identify p(zo,2n—1,;) with I1 wﬁll (%),
1<i<ko ’ nohd
- n—1 - n—1
we must have gd—! = gd~! [[ p, which means d =d [] !
r=1 r=1

p(2n—1,i,20,5) with 1 <@ < kp_1, ko < j < ko + I in the product is:

n—1 n—1
A —1 —1
ko<j<ko+lo Zn—1,i — qdZzoj [ pr " Zn—1:— 20,5 11 W
r=1 r=1

P(Zn71,i720,j) = H o1

1Si§k}n71 Z’I’L—17i — ZOJ‘ H ,LLqu
r=1

Zn—1,i — 20,5

n—1
cdt H Ly
r=1

n—1
. —1
ko<j<kot+lo [ Zn—1,i — qdzoj T] py
r=1

n—1
—1
p(zn-1.i;%0,5) = P d ] we
1<i<kn_1 n=li ™ 0, r=1
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ko<j<ko+lo (n) .
3 3 3 n—1,i
In order to identify p(2zn—1,:,20,;) With const - I Wi i ( v ),
1<i<kn—1 '

- n—1
we must have ¢gd = qd [] p,', which is guaranteed by p(z0.:, 2n—1,;)-
r=1

P(Za,i5 %a,5) With 1 < i <k, < j < kq + l,1in the product is:

ka<jgka+la —2 kq <j§ka+la
o Zag — 4 “Za,j o (n) Za,i
Plaiiza) =[] PR [I wi S
1<i<kq a,? @J 1<i<kq @7
We have ¢ = q.

P(Za,is Zag1,5) With 1 <@ < kg, kay1 <J < kap1+larr V1I<a <n—2in
the product is:

ka+1<j<kat+1+lat1

Zai — qpat1Zat1,5 1 Zai — flat1Za+1,j

P(Za,is Zay1,5) =

1
1<i<ka Za,i — Ma+1%a+1,5 d Za,i — Ra+1,j

ka+1<j<kat+1+lat1
P(Za,ir Zat1,5) = (

Za,i — qAftat1Zat1,5 1)

1<i<keq Za,i ” Zatl,j d
kat+1<j<ka+1t+lat1 o
In order to identify p(zq,i,2q+1,;) With 11 w31 (z vt ) ’
: at1.s

1<i<k,
we must have (jJ = qdtq+1 which means d= dptg41-

P(Zat1,is Za,j) With 1 <4 < kop1, ke < j<ke+l, V1<a<n-—-2in
the product is:

ka<j<kq+l -1, -1 -1
U Fa1i 44T Mg 1 Zay Zatli — MayiZag
plzariinzag) = ][ - -

-1 P L Ha+1
1<i<kai1 Za+1,i — Har1%a,j atli — Za,j

ka<j<ka+la ~1 -1
H Zat+1,i — qd Ha+17a,j

P(Za+1,is Za,j) = Hat1

z i — Ra.j
1<i<kat1 a+1,2 a,j

ka<j<kat+la
In order to identify p(zq+1,4, 2q,;) With I w
1<i<katt

have §d—! = qd’l,u;ll which is guaranteed by p(2a.i, Za+1,5)-

(n) (za+1,i

ii—1\ "z, )a we must

It remains to verify wheel conditions:

. The Sh= wheel in color (r,r,7+1)1 < r < n — 2 implies vanishing
g m-+n

m

as ql_n . Zr41 Zr,a

= qd, ‘J1% - 2Lt — gd~t, which means 4 = qdql% =

Zr,a
Zri1,b

qd, £t = qd~'qy " =qd "

Zr,c +1,b

41



2. The Sh=x wheel in color (r,r 4+ 1,7 + 1)implies vanishing as Q1% z;*ilb“ =
Olmgn T
qd g " - 7;:117,0 = qd, which means 7;:710 = qd, 72’21“ =qgd '

3. Other cases can be verified similarly.
Therefore, we have constructed a homomorphism Yy, 4 5.

Tm+n,n : @ Sh; (kOa"'7k07k17'"akn*1)|¢h,(h,q3 -
m4n
ko,k1,....kn—1 m41 no1
Sh= (k07-~'7kn—1)‘~ m N - given by
ol e — 1=q14," ,42=02,43=0q3q; "
n

. 0,ko 1,ko m, ko m+1,k1 m4n—1,k,_1

Tm-{-n,n : f (Xo,l 5X1,1 yee e 7Xm,1 7Xm+1,1 Yt ’Xm,—i-n—l,l '
0,ko _—1r,0,ko —m s0,kg —m+E 1k — n—1kn_1

f (ZO,I 41 Zo,l yeesqy ZO,l 4y Z1,1 yee s qy Zn—l,ln -G

n—11<j<kqt1

[1 (0i—ad20)"  TI Tl (2ai— @" Zat1,)

o - LSiisho a=0 1<i<k,
IT (200 —a%20)™ - (20 — 47 220,5)™)
1<i<j<ko
n—1 k2
—kola_ kg
l_[1 fra T (—qd?)
.

n—11<j<kqt1

[T II  (2a0— 2a41.5)

a=0 1<i<k,
To summarize, we have obtained that:
n—1
d=q "d™ ', d=dpy,...,d=dp,1, d=d]]u’
r=1

Taking the product of the terms above, we have: dn = g mdmtn =
d(dg=')™ and d = d(dg~ ') = dq," .
In particular,

m

G =q04q", @©=4q, 4@G=0q¢q0"

m
n

»—-3‘3

po =iz =,...,=pn_1 =dd"' =¢q

_m_»'_%

i =dgmd” " = g
Thus, overall we get 2"~! such specialization homomorphisms when we start

from color 0 variables. Allowing the extra rotation, we end up having precisely
n - 2"~ ! specialization homomorphisms.
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4 Compatibility of subalgebra mappings

We conclude our paper with a few compatibility properties among realization
maps and important subalgebras previously studied in [FHHSY], [FT]. Un-

der the constructed homomorphism Y,,4p r : P Sh;{ — ShA , wWe
E=(k0km) m-4n n
explore the image and behavior of subalgebras under this mapping.

4.1 Bethe Subalgebras

Define Bethe subalgebra as a N-graded subspace. Following [FHHSY] and Def-
inition 1.8 of [FT], we introduce an important Z,-graded subspace A =
P, A" of Shyr . Its degree n component is defined by

A= {F € Shyi, | 0O F, 0N P exist and 9O F = 0N F 0 <k<n}

where 0OF F .= lim F (1, & Tpepat, -, & Ty)
£—0

AR E .= lim F (x1,...,& Tnpat,. . & Tn)
E—o0

With the particular specialization discussed above, we have:

Theorem 4.2 (Mapping Compatibility with Bethe Subalgebras)

m,l m+n—1,1

. o,N m,N m+1,N m+n—1,N
Tm+n7n.f<X071,X X Xm+11,.. X )%
0,N 0,N O,N m—2 _1 N n—1,N
F<2017 ZOl,...,q3Z01,q3 le,---,q;), Zy_ 11)'G

N m n-
const - ] (20,i — g320,5) H

G = T ((20. ’_7(]220’j)(20,i —q22,4))" . H H (Zayi —

1<i<j<N

1 m

N

H (2a,i — 43 nza-&-ld)
j:

—1

Za+1,j)
a=01,j=1

m m

and the new parameters are §1 = q1qs ", §2 = 42,43 = q343"

Proof.

Note that any segment [a’, b] rolled around Z/nZ is arising from a segment [a, b]
rolled around Z/m + nZ .
Also recall the explicit generators of A(Ss):

m+n—1 m+n—1
TCREPRR |
i=0 r#s<N i=0

N N
0---5i H L — M- H 93¢+1,r)
_ r=1 r=1
Fi(s) =

m+n—1

(xi,r - xi-‘rl,s)
1

=

=0 r,
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Note that under above specialization:

m+n—1
-2
H H LTir —q Tis _>H H Zir —( Zi,s)
r=0 r#s<N =0 r#s<N
m+n—1
H H L — xz—&—la — H H Za,r T Ra+1, a)

r,s=1 a=0r,s=1

Note however that the above factor in T has degree m - N, hence, to preserve
N

degree 0 component we can, for instance, add an element [] 2" that is com-
i=1

patible with the shuffle product.

For 0 <i <m — 1, we have:

N N
specialization of{ (so v [ @i — 1 H Titl r) } = const - H 20,r
r=1

r=1 r=1

Form <i<m+n—1, we have:

N N
specialization of{ (so - H Tip — H $i+1,r> } = const-
r=1 r=1
N N
(So S8 H Zi—m,r — u(qg " ) H Zim+1,r>
r=1 r=1

Thus, we have

N N
_mN
80...SmHZ(]’T—/1,'(J3 " HZLT :
r=1 r=1
N N
_mN
30~~~Smsm+1H21,r_N'q;3 " HZQ,T’
r=1

r=1

N 7mN N
S0 - Sn4+m—1 H Zn—1, — K- Q3 H 20,7

r=1 r=1

- N -
Let T=7-]] 2, we have Yppinnn: D ShA — Sh= .
i=1 (ko kem) 8lin gl,

Therefore, T (A (80,81, Smin-1)) = A (807 ey Sy Smtls Sman—1) C Sh:[
al,

4.3 horizontal Heisenberg
Theorem 4.4 Heisenberg Subalgebra Compatibility
T : (Heis"™* CU(gl,0n)) = (Heis"™"+ C U(gl,,))

So, under Y, we also have Y : (Hezsﬁfj_;r) = Heishor+,
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Proof.

This result is a direct consequence of Theorem 4.2 in the limit s, sg, . . . Spp4p—1 —
0 of [N3].

4.5 Subalgebra of slope 0
Following the definition provided in [N3], we recall slope 0 subalgebra, A°= =

Olmtn
. l

= o <[ <

{FES’hg[ |511>H010F£ 0<I<k}

m+n

Let’s check if this condition behaves well under the map of Y.

Proposition 4.6 Compatibility of Subalgebra of slope 0
T is compatible with subalgebras of slope 0, that is T (F) € AOQ:[ for Fe€ AOET[
n m—4n

Proof.

Pick I = (lp...ly—1) = (ko...kn,—1) then specializing {z .0 < i <
n—11<7r <} to&- 2z with & - oo in T(F) is equal to specialize
{irim+1<i<m,1<r<lp}U{zi,m+1<i<m+4+n—-11<r<l_,}
to & -z, & — 00.

We check the factor of ¢ if it has limit as £ — oo.

ko m n—1 155Ska+1 _m
H (ZO,T - QBZO,S) : H H (Za,r —qs " Za+1,s)
B r,s=1 a=0 1<r<k,
n—11<s<kat1 m  Fo
(Za,r — Zat1,8) - IT (200 —a?20,5)" - 11 2
a=0 1<r<k, 1<r#s<kg r=1

As £ — o0, the numerator of ¢ approaches
n—1
m(kg — (ko —1o)?) + Z (kakat1 — (ka = la)(Kat1 = lav1))
a=0

the denominator of ¢ approaches

n—1

m(ko(ko—1) = (ko —1o) (ko —lo — 1)) +mlo+ Y (kakas1 — (ka—la) (Kat1—lat1))
a=0

Note that
k3 — (ko — 1o)* = 2kolg — 12
ko(ko — 1) — (ko — lo) (ko — lo — 1) + log = 2koly — 12

Therefore, the factor of ¢ has nonzero limit as we specialize z; , to £ - z; » when

& — oo. Under T, we have T(Ailom:o) C Ailol)e:o, which means T is surjective.
g[m«l»n g[n
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5 Further directions

From our discussion of mappings between Sh=z — Sh:{ , two questions
Olmyn al,
arise for further explorations: From our discussion of algebra homomorphisms
connecting subalgebras of Sh < with Shl:l\, two types:
9lmtn gln

1. Besides for subspaces/subalgebras Sh(kg ...k, k1 ... k1), there are many
more subalgebras coming from constants on degrees.

2. It’s a very interesting question to generalize the present result of T to
the S’hﬁ for g simple Lie algebras of other types, in particular, to types
Bna Cnv D’n .

Acknowledgements

My deepest thanks to my mentor, Professor Alexander Tsymbaliuk, for his
kindness, guidance, and patience with the tiniest details. I am thankful for
his support and he helped me realize both the hardship and fun that comes
with writing a paper. I would also like to thank my family, who created the
environment in which countless hours of work were done in.

References

[BT] M. Bershtein, A Tsymbaliuk, Homomorphisms between different quantum
toroidal and affine Yangian algebras, JPAA 223 (2019), no. 2, 867-899

[DF| J. Ding, 1. Frenkel, Isomorphism of two realizations of quantum affine
algebra Uy(gl,), Comm. Math. Phys. 156 (1993), no. 2, 277-300.

[FIMM] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Branching rules for quan-
tum toroidal gl,,, Adv. Math. 300 (2016), 229-274.

[FHHSY] B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, S. Yanagida,
A commutative algebra on degenerate CP' and Macdonald polynomials,
J.Math.Phys., 50(9):0952515, 42,2009.

[FO] B. Feigin, A. Odesskii, Elliptic deformations of current algebras and
their representations by difference operators, (Russian) Funktsional. Anal.
i Prilozhen. 31 (1997), no. 3, 57-70; translation in Funct. Anal. Appl. 31
(1998), no. 3, 193-203.

[FT] B. Feigin, A. Tsymbaliuk, Bethe subalgebras of Uq(aln) via  shuffle al-
gebras, Selecta Math. (N. S.) 22 (2016), no. 2, 979-1011.

[N1] A. Negut, The shuffle algebra revisited, Int. Math. Res. Not. IMRN (2014),
no. 22, 6242-6275.

[N2] A. Negut, Quantum toroidal and shuffle algebras, Adv. Math. 372 (2020),
Paper No. 107288.

[N3] A.Negut, The PBW Basis of U, 4(gl,,), Trans formationGroups(2022), DOT :
10.1007/s00031 — 022 — 09696 — x.pdf.

46



[NT] A. Negut, A. Tsymbaliuk, Quantum loop groups and shuffle algebras via
lyndon words, https://arxiv.org/pdf/2102.11269.pdf

[T1] A. Tsymbaliuk, PBWD bases and shuffle algebra realizations for
Uy(Ls1,), Uyt v2(Lsly), Uv(Lsl(m|n)) and their integral forms, Selecta
Math. (N.S.) 27 (2021), no. 3, Paper No. 35, 48pp

47



